{"title":"On a Problem of Danzer","authors":"Nabil H. Mustafa, Saurabh Ray","doi":"10.1017/S0963548318000445","DOIUrl":null,"url":null,"abstract":"Let C be a bounded convex object in ℝd, and let P be a set of n points lying outside C. Further, let cp, cq be two integers with 1 ⩽ cq ⩽ cp ⩽ n - ⌊d/2⌋, such that every cp + ⌊d/2⌋ points of P contain a subset of size cq + ⌊d/2⌋ whose convex hull is disjoint from C. Then our main theorem states the existence of a partition of P into a small number of subsets, each of whose convex hulls are disjoint from C. Our proof is constructive and implies that such a partition can be computed in polynomial time. In particular, our general theorem implies polynomial bounds for Hadwiger--Debrunner (p, q) numbers for balls in ℝd. For example, it follows from our theorem that when p > q = (1+β)⋅d/2 for β > 0, then any set of balls satisfying the (p, q)-property can be hit by O((1+β)2d2p1+1/β logp) points. This is the first improvement over a nearly 60 year-old exponential bound of roughly O(2d). Our results also complement the results obtained in a recent work of Keller, Smorodinsky and Tardos where, apart from improvements to the bound on HD(p, q) for convex sets in ℝd for various ranges of p and q, a polynomial bound is obtained for regions with low union complexity in the plane.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S0963548318000445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Let C be a bounded convex object in ℝd, and let P be a set of n points lying outside C. Further, let cp, cq be two integers with 1 ⩽ cq ⩽ cp ⩽ n - ⌊d/2⌋, such that every cp + ⌊d/2⌋ points of P contain a subset of size cq + ⌊d/2⌋ whose convex hull is disjoint from C. Then our main theorem states the existence of a partition of P into a small number of subsets, each of whose convex hulls are disjoint from C. Our proof is constructive and implies that such a partition can be computed in polynomial time. In particular, our general theorem implies polynomial bounds for Hadwiger--Debrunner (p, q) numbers for balls in ℝd. For example, it follows from our theorem that when p > q = (1+β)⋅d/2 for β > 0, then any set of balls satisfying the (p, q)-property can be hit by O((1+β)2d2p1+1/β logp) points. This is the first improvement over a nearly 60 year-old exponential bound of roughly O(2d). Our results also complement the results obtained in a recent work of Keller, Smorodinsky and Tardos where, apart from improvements to the bound on HD(p, q) for convex sets in ℝd for various ranges of p and q, a polynomial bound is obtained for regions with low union complexity in the plane.