Feature Engineering Meets Deep Learning: A Case Study on Table Detection in Documents

M. Shahzad, Rabeya Noor, Sheraz Ahmad, A. Mian, F. Shafait
{"title":"Feature Engineering Meets Deep Learning: A Case Study on Table Detection in Documents","authors":"M. Shahzad, Rabeya Noor, Sheraz Ahmad, A. Mian, F. Shafait","doi":"10.1109/DICTA47822.2019.8945929","DOIUrl":null,"url":null,"abstract":"Traditional computer vision approaches heavily relied on hand-crafted features for tasks such as visual object detection and recognition. The recent success of deep learning in automatically extracting representative and powerful features from images has brought a paradigm shift in this area. As a side effect, decades of research into hand-crafted features is considered outdated. In this paper, we present an approach for table detection in which we leverage a deep learning based table detection model with hand-crafted features from a classical table detection method. We demonstrate that by using a suitable encoding of hand-crafted features, the deep learning model is able to perform better at the detection task. Experiments on publicly available UNLV dataset show that the presented method achieves an accuracy comparable with the state-of-the-art deep learning methods without the need of extensive hyper-parameter tuning.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional computer vision approaches heavily relied on hand-crafted features for tasks such as visual object detection and recognition. The recent success of deep learning in automatically extracting representative and powerful features from images has brought a paradigm shift in this area. As a side effect, decades of research into hand-crafted features is considered outdated. In this paper, we present an approach for table detection in which we leverage a deep learning based table detection model with hand-crafted features from a classical table detection method. We demonstrate that by using a suitable encoding of hand-crafted features, the deep learning model is able to perform better at the detection task. Experiments on publicly available UNLV dataset show that the presented method achieves an accuracy comparable with the state-of-the-art deep learning methods without the need of extensive hyper-parameter tuning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特征工程与深度学习:文档中表检测的案例研究
传统的计算机视觉方法严重依赖于手工制作的特征来完成视觉对象检测和识别等任务。最近深度学习在自动从图像中提取代表性和强大特征方面的成功,带来了这一领域的范式转变。副作用是,几十年来对手工制作特征的研究被认为是过时的。在本文中,我们提出了一种表检测方法,其中我们利用基于深度学习的表检测模型,该模型具有来自经典表检测方法的手工制作特征。我们证明,通过使用合适的手工特征编码,深度学习模型能够在检测任务中表现更好。在公开可用的UNLV数据集上的实验表明,该方法在不需要大量超参数调优的情况下,达到了与最先进的深度学习方法相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Micro Target Detection through Local Motion Feedback in Biologically Inspired Algorithms Hyperspectral Image Analysis for Writer Identification using Deep Learning Robust Image Watermarking Framework Powered by Convolutional Encoder-Decoder Network Single View 3D Point Cloud Reconstruction using Novel View Synthesis and Self-Supervised Depth Estimation Semantic Segmentation under Severe Imaging Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1