Water demand forecasting in Qinzhou, China

Mengxiu Zeng, Yougui Song
{"title":"Water demand forecasting in Qinzhou, China","authors":"Mengxiu Zeng, Yougui Song","doi":"10.1109/ISWREP.2011.5893123","DOIUrl":null,"url":null,"abstract":"The water demand from 2010 to 2018 in Qinzhou has been forecasted using a new model based on the combinations of grey forecasting model GM(1,1) and Auto Regressive Moving Average(ARMA) model. The predicted results indicate that total water demand, industrial water demand and domestic water demand will increase, and agricultural water demand decreases gradually. However, the agricultural consumption is still dominant in the future. The trend of total water demand is similar to that of industrial water demand, and in some extent we can assess the trend of total water demand based on industrial water demand.","PeriodicalId":6425,"journal":{"name":"2011 International Symposium on Water Resource and Environmental Protection","volume":"12 1","pages":"779-782"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Symposium on Water Resource and Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWREP.2011.5893123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The water demand from 2010 to 2018 in Qinzhou has been forecasted using a new model based on the combinations of grey forecasting model GM(1,1) and Auto Regressive Moving Average(ARMA) model. The predicted results indicate that total water demand, industrial water demand and domestic water demand will increase, and agricultural water demand decreases gradually. However, the agricultural consumption is still dominant in the future. The trend of total water demand is similar to that of industrial water demand, and in some extent we can assess the trend of total water demand based on industrial water demand.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钦州地区用水需求预测
采用灰色预测模型GM(1,1)与自动回归移动平均(ARMA)模型相结合的方法,对钦州市2010 - 2018年用水量进行了预测。预测结果表明:总需水量、工业需水量和生活需水量均将增加,农业需水量逐渐减少。但在未来,农业消费仍占主导地位。总需水量变化趋势与工业需水量变化趋势相似,在一定程度上可以通过工业需水量来评价总需水量变化趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of vanadium(V) based on its ternary complex with 2-(8-quinolylazo)-4,5-diphenylimidazole and hydrogen peroxide by high performance liquid chromatography Calculating precipitation recharge to groundwater applying envieronmental chloride tracer method Bioremediation of β-cypermethrin and 3-phenoxybenzoic acid in soils Numerical simulation of sediment transport in Bohai Bay Wastewater treatment and clean production in a coated paper mill
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1