Efficient neural network accelerators with optical computing and communication

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Computer Science and Information Systems Pub Date : 2023-01-01 DOI:10.2298/csis220131066x
Chengpeng Xia, Yawen Chen, Haibo Zhang, Hao Zhang, Fei Dai, Jigang Wu
{"title":"Efficient neural network accelerators with optical computing and communication","authors":"Chengpeng Xia, Yawen Chen, Haibo Zhang, Hao Zhang, Fei Dai, Jigang Wu","doi":"10.2298/csis220131066x","DOIUrl":null,"url":null,"abstract":"Conventional electronic Artificial Neural Networks (ANNs) accelerators focus on architecture design and numerical computation optimization to improve the training efficiency. However, these approaches have recently encountered bottlenecks in terms of energy efficiency and computing performance, which leads to an increase interest in photonic accelerator. Photonic architectures with low energy consumption, high transmission speed and high bandwidth have been considered as an important role for generation of computing architectures. In this paper, to provide a better understanding of optical technology used in ANN acceleration, we present a comprehensive review for the efficient photonic computing and communication in ANN accelerators. The related photonic devices are investigated in terms of the application in ANNs acceleration, and a classification of existing solutions is proposed that are categorized into optical computing acceleration and optical communication acceleration according to photonic effects and photonic architectures. Moreover, we discuss the challenges for these photonic neural network acceleration approaches to highlight the most promising future research opportunities in this field.","PeriodicalId":50636,"journal":{"name":"Computer Science and Information Systems","volume":"94 1","pages":"513-535"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2298/csis220131066x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional electronic Artificial Neural Networks (ANNs) accelerators focus on architecture design and numerical computation optimization to improve the training efficiency. However, these approaches have recently encountered bottlenecks in terms of energy efficiency and computing performance, which leads to an increase interest in photonic accelerator. Photonic architectures with low energy consumption, high transmission speed and high bandwidth have been considered as an important role for generation of computing architectures. In this paper, to provide a better understanding of optical technology used in ANN acceleration, we present a comprehensive review for the efficient photonic computing and communication in ANN accelerators. The related photonic devices are investigated in terms of the application in ANNs acceleration, and a classification of existing solutions is proposed that are categorized into optical computing acceleration and optical communication acceleration according to photonic effects and photonic architectures. Moreover, we discuss the challenges for these photonic neural network acceleration approaches to highlight the most promising future research opportunities in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有光计算和通信功能的高效神经网络加速器
传统的电子人工神经网络加速器主要通过结构设计和数值计算优化来提高训练效率。然而,这些方法最近在能量效率和计算性能方面遇到了瓶颈,这导致人们对光子加速器的兴趣增加。具有低能耗、高传输速度和高带宽的光子体系结构被认为是计算体系结构的重要组成部分。为了更好地理解用于人工神经网络加速的光学技术,我们对人工神经网络加速器中的高效光子计算和通信进行了全面的综述。对相关的光子器件在人工神经网络加速中的应用进行了研究,并根据光子效应和光子结构将现有的解决方案分为光计算加速和光通信加速。此外,我们讨论了这些光子神经网络加速方法面临的挑战,以突出该领域最有希望的未来研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Science and Information Systems
Computer Science and Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
2.30
自引率
21.40%
发文量
76
审稿时长
7.5 months
期刊介绍: About the journal Home page Contact information Aims and scope Indexing information Editorial policies ComSIS consortium Journal boards Managing board For authors Information for contributors Paper submission Article submission through OJS Copyright transfer form Download section For readers Forthcoming articles Current issue Archive Subscription For reviewers View and review submissions News Journal''s Facebook page Call for special issue New issue notification Aims and scope Computer Science and Information Systems (ComSIS) is an international refereed journal, published in Serbia. The objective of ComSIS is to communicate important research and development results in the areas of computer science, software engineering, and information systems.
期刊最新文献
Reviewer Acknowledgements for Computer and Information Science, Vol. 16, No. 3 Drawbacks of Traditional Environmental Monitoring Systems Improving the Classification Ability of Delegating Classifiers Using Different Supervised Machine Learning Algorithms Reinforcement learning - based adaptation and scheduling methods for multi-source DASH On the Convergence of Hypergeometric to Binomial Distributions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1