{"title":"A numerical study of cool and green roof strategies on indoor energy saving and outdoor cooling impact at pedestrian level in a hot arid climate","authors":"M. Elnabawi, E. Saber","doi":"10.1080/19401493.2022.2110944","DOIUrl":null,"url":null,"abstract":"Green and cool roofs retrofit technologies, aim to mitigate the urban heat island effect and cooling energy demands from buildings. This study reports on parametric energy modelling of energy saving loads and indoor air temperature, as well as microclimate modelling of outdoor air temperature. The work adds new knowledge by evaluating roof retrofit technologies at the building and neighbourhood scale, and the results should guide strategic decisions for building envelope retrofitting. The simulations respectively predicted a 10% and 7.5% reduction in the cooling load for cool and green roofs versus a conventional roof. In summer, the indoor air temperature was similar for these roofs, but in winter the cool roof's indoor air temperature was 0.5°C lower than the green. In the microclimate simulation, average roof surface temperatures were 31.5°C (cool) and 31.3°C (green), versus 40.2°C (conventional); the air temperature difference was −0.8°C (cool) and −0.6°C (green) against the conventional roof.","PeriodicalId":49168,"journal":{"name":"Journal of Building Performance Simulation","volume":"47 1","pages":"72 - 89"},"PeriodicalIF":2.2000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Performance Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/19401493.2022.2110944","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Green and cool roofs retrofit technologies, aim to mitigate the urban heat island effect and cooling energy demands from buildings. This study reports on parametric energy modelling of energy saving loads and indoor air temperature, as well as microclimate modelling of outdoor air temperature. The work adds new knowledge by evaluating roof retrofit technologies at the building and neighbourhood scale, and the results should guide strategic decisions for building envelope retrofitting. The simulations respectively predicted a 10% and 7.5% reduction in the cooling load for cool and green roofs versus a conventional roof. In summer, the indoor air temperature was similar for these roofs, but in winter the cool roof's indoor air temperature was 0.5°C lower than the green. In the microclimate simulation, average roof surface temperatures were 31.5°C (cool) and 31.3°C (green), versus 40.2°C (conventional); the air temperature difference was −0.8°C (cool) and −0.6°C (green) against the conventional roof.
期刊介绍:
The Journal of Building Performance Simulation (JBPS) aims to make a substantial and lasting contribution to the international building community by supporting our authors and the high-quality, original research they submit. The journal also offers a forum for original review papers and researched case studies
We welcome building performance simulation contributions that explore the following topics related to buildings and communities:
-Theoretical aspects related to modelling and simulating the physical processes (thermal, air flow, moisture, lighting, acoustics).
-Theoretical aspects related to modelling and simulating conventional and innovative energy conversion, storage, distribution, and control systems.
-Theoretical aspects related to occupants, weather data, and other boundary conditions.
-Methods and algorithms for optimizing the performance of buildings and communities and the systems which service them, including interaction with the electrical grid.
-Uncertainty, sensitivity analysis, and calibration.
-Methods and algorithms for validating models and for verifying solution methods and tools.
-Development and validation of controls-oriented models that are appropriate for model predictive control and/or automated fault detection and diagnostics.
-Techniques for educating and training tool users.
-Software development techniques and interoperability issues with direct applicability to building performance simulation.
-Case studies involving the application of building performance simulation for any stage of the design, construction, commissioning, operation, or management of buildings and the systems which service them are welcomed if they include validation or aspects that make a novel contribution to the knowledge base.