{"title":"Removal of influenza A virus, phage T1, and PP7 from fluids with a nylon 0.04‐μM membrane filter","authors":"K. Oshima, A. Highsmith, E. Ades","doi":"10.1002/TOX.2530090302","DOIUrl":null,"url":null,"abstract":"We tested the ability of a 0.04-μm nylon membrane filter to remove viral agents (influenza A virus, 80–120 nm; phage T1, 50–150 nm; and phage PP7, 25 nm) from the following media: ultrapure water (UPW), Dulbecco's modified Eagle minimum essential medium (DMEM), gelatin phosphate (GP), DMEM with 10% (DMEM-10) fetal bovine serum (FBS), and 100% FBS. When challenged with at least 3.0 × 107 plaque-forming units/mL, no influenza A virus was detected downstream of the filter with any of the fluids tested. The titer reduction (Tr) was determined using the equation: \n \n \n \n. \n \nHigher concentrations of phage T1 were removed from UPW (Tr = 1.6 × 106) and DMEM (Tr = 1.1 × 106) than from GP (Tr = 9.3 × 103), DMEM-10 (Tr = 1.5 × 102), and 100% FBS (Tr = 2.4 × 102). Phage PP7 was removed in significant numbers only in ultrapure water (Tr = 8.5 × 104). The results indicate that adsorption enhanced the titer reduction in fluids containing low levels of protein. The titer reduction in DMEM-10 and 100% FBS may reflect the sieving properties of the 0.04-μm filter. As expected, a much smaller Tr was observed in the filtrate of the 0.2-μm filters, compared to the 0.04 μm filters. In contrast to the 0.04-μm filter, no increase in Tr was detected when the 0.2-μm filters were challenged with virus diluted in UPW compared with virus diluted in GP. These results suggest that the 0.04-μm filter has greater adsorptive properties than the 0.2-μm filter. © 1994 by John Wiley & Sons, Inc..","PeriodicalId":11824,"journal":{"name":"Environmental Toxicology & Water Quality","volume":"18 1","pages":"165-170"},"PeriodicalIF":0.0000,"publicationDate":"1994-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology & Water Quality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/TOX.2530090302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
用0.04 μM尼龙膜过滤器从液体中去除甲型流感病毒、噬菌体T1和PP7
我们测试了0.04-μm尼龙膜过滤器去除病毒因子的能力(甲型流感病毒,80-120 nm;噬菌体T1, 50-150 nm;和噬菌体PP7, 25 nm),从以下培养基:超纯水(UPW), Dulbecco's modified Eagle minimum essential medium (DMEM),明胶磷酸盐(GP),含10% (DMEM-10)胎牛血清(FBS)的DMEM,和100%胎牛血清。当用至少3.0 × 107个空斑形成单位/mL攻毒时,在过滤器下游检测到的任何液体均未检测到甲型流感病毒。滴度还原(Tr)用公式确定:UPW (Tr = 1.6 × 106)和DMEM (Tr = 1.1 × 106)中噬菌体T1的去除浓度高于GP (Tr = 9.3 × 103)、DMEM-10 (Tr = 1.5 × 102)和100% FBS (Tr = 2.4 × 102)。噬菌体PP7仅在超纯水中被大量去除(Tr = 8.5 × 104)。结果表明,在含有低水平蛋白质的液体中,吸附增强了滴度的降低。DMEM-10和100% FBS的滴度降低可能反映了0.04-μm过滤器的筛分性能。正如预期的那样,与0.04 μm过滤器相比,0.2 μm过滤器的滤液中的Tr要小得多。与0.04 μm滤纸相比,0.2 μm滤纸经UPW稀释后与GP稀释后相比,未检测到Tr增加。结果表明,0.04 μm过滤器的吸附性能优于0.2 μm过滤器。©1994 by John Wiley & Sons, Inc.。
本文章由计算机程序翻译,如有差异,请以英文原文为准。