{"title":"Understanding cardinality estimation using entropy maximization","authors":"C. Ré, Dan Suciu","doi":"10.1145/1807085.1807095","DOIUrl":null,"url":null,"abstract":"Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this paper we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"23 1","pages":"53-64"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807085.1807095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Cardinality estimation is the problem of estimating the number of tuples returned by a query; it is a fundamentally important task in data management, used in query optimization, progress estimation, and resource provisioning. We study cardinality estimation in a principled framework: given a set of statistical assertions about the number of tuples returned by a fixed set of queries, predict the number of tuples returned by a new query. We model this problem using the probability space, over possible worlds, that satisfies all provided statistical assertions and maximizes entropy. We call this the Entropy Maximization model for statistics (MaxEnt). In this paper we develop the mathematical techniques needed to use the MaxEnt model for predicting the cardinality of conjunctive queries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
理解使用熵最大化的基数估计
基数估计是估计查询返回的元组数量的问题;它是数据管理中的一项基本重要任务,用于查询优化、进度估计和资源供应。我们在一个有原则的框架中研究基数估计:给定一组关于固定查询返回的元组数量的统计断言,预测新查询返回的元组数量。我们使用概率空间来模拟这个问题,在可能世界中,它满足所有提供的统计断言并使熵最大化。我们称之为统计学的熵最大化模型(MaxEnt)。在本文中,我们开发了使用MaxEnt模型预测连接查询的基数所需的数学技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Subspace exploration: Bounds on Projected Frequency Estimation. PODS'21: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Virtual Event, China, June 20-25, 2021 Computing Optimal Repairs for Functional Dependencies. Relational database behavior: utilizing relational discrete event systems and models Data Citation: a Computational Challenge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1