Proposed variable sampling interval maximum EWMA and distance EWMA charts with unknown process parameters

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY Stat Pub Date : 2023-08-16 DOI:10.1002/sta4.605
R. Parvin, M. Khoo, S. Saha, W. L. Teoh
{"title":"Proposed variable sampling interval maximum EWMA and distance EWMA charts with unknown process parameters","authors":"R. Parvin, M. Khoo, S. Saha, W. L. Teoh","doi":"10.1002/sta4.605","DOIUrl":null,"url":null,"abstract":"The variable sampling interval (VSI) exponentially weighted moving average (EWMA) chart which varies the chart's sampling interval according to the value of the current plotting statistic increases the speed of the standard EWMA chart in detecting shifts. Joint monitoring schemes use a single combined statistic for the mean and variance in process monitoring. To simultaneously monitor the mean and variance of a process from the normal distribution, two VSI EWMA schemes with unknown process parameters, based on (i) Maximum (Max) and (ii) Distance (Dis) type combining functions, are proposed in this paper. Each of these schemes uses a single plotting statistic. The effects of parameter estimation on the performance of the proposed VSI Max EWMA and VSI Dis EWMA schemes, in terms of the average time to signal, standard deviation of the time to signal, expected average time to signal and median time to signal criteria, are studied using Monte Carlo simulation. The results show that the proposed schemes can identify process shifts quicker than the existing Max/Dis Shewhart (SH), Max/Dis cumulative sum (CUSUM) and Max/Dis EWMA schemes. The implementation of the proposed schemes is demonstrated using a commercial dataset.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"102 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.605","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The variable sampling interval (VSI) exponentially weighted moving average (EWMA) chart which varies the chart's sampling interval according to the value of the current plotting statistic increases the speed of the standard EWMA chart in detecting shifts. Joint monitoring schemes use a single combined statistic for the mean and variance in process monitoring. To simultaneously monitor the mean and variance of a process from the normal distribution, two VSI EWMA schemes with unknown process parameters, based on (i) Maximum (Max) and (ii) Distance (Dis) type combining functions, are proposed in this paper. Each of these schemes uses a single plotting statistic. The effects of parameter estimation on the performance of the proposed VSI Max EWMA and VSI Dis EWMA schemes, in terms of the average time to signal, standard deviation of the time to signal, expected average time to signal and median time to signal criteria, are studied using Monte Carlo simulation. The results show that the proposed schemes can identify process shifts quicker than the existing Max/Dis Shewhart (SH), Max/Dis cumulative sum (CUSUM) and Max/Dis EWMA schemes. The implementation of the proposed schemes is demonstrated using a commercial dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出了过程参数未知的变采样区间最大EWMA和距离EWMA图
可变采样间隔指数加权移动平均图(VSI)根据当前绘制统计量的值改变图的采样间隔,提高了标准指数加权移动平均图检测移位的速度。联合监测方案在过程监测中使用单个组合统计量来表示均值和方差。为了从正态分布同时监测过程的均值和方差,本文提出了基于(i) Maximum (Max)和(ii) Distance (Dis)型组合函数的两种未知过程参数的VSI EWMA方案。这些方案中的每一个都使用一个单独的绘图统计量。利用蒙特卡罗仿真研究了参数估计对所提出的VSI Max和VSI Dis EWMA方案在平均到信号时间、到信号时间标准差、期望平均到信号时间和中位数到信号时间准则方面性能的影响。结果表明,该算法比现有的Max/Dis Shewhart (SH)、Max/Dis cumulative sum (CUSUM)和Max/Dis EWMA算法能更快地识别过程转移。使用商业数据集演示了所提出方案的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stat
Stat Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍: Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell. Stat is characterised by: • Speed - a high-quality review process that aims to reach a decision within 20 days of submission. • Concision - a maximum article length of 10 pages of text, not including references. • Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images. • Scope - addresses all areas of statistics and interdisciplinary areas. Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.
期刊最新文献
Communication‐Efficient Distributed Estimation of Causal Effects With High‐Dimensional Data A Joint Temporal Model for Hospitalizations and ICU Admissions Due to COVID‐19 in Quebec Bitcoin Price Prediction Using Deep Bayesian LSTM With Uncertainty Quantification: A Monte Carlo Dropout–Based Approach Exact interval estimation for three parameters subject to false positive misclassification Novel Closed‐Form Point Estimators for a Weighted Exponential Family Derived From Likelihood Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1