{"title":"High-level multiplex DNA amplification.","authors":"N. Broude, K. Driscoll, C. Cantor","doi":"10.1089/108729001753231704","DOIUrl":null,"url":null,"abstract":"We present data on efficient amplification of large number of DNA targets using a single-tube polymerase chain reaction (PCR). This is a further enhancement of our approach to multiplexed PCR based on PCR suppression, which allows multiple DNA amplification using only one sequence-specific primer per amplicon while the second primer is common for all targets (Broude, N.E., et al., Proc. Natl. Acad. Sci. USA 98, 206-211, 2001). The reaction conditions have been optimized for simultaneous synthesis of 30 DNA targets, mostly consisting of fragments containing single nucleotide polymorphisms (SNP). The size of the amplified fragments, derived from many different human chromosomes, varies from 100 to 600 bp. We conclude that this method has potential for highly multiplexed DNA amplification useful for SNP analyses, DNA diagnostics, and forensics.","PeriodicalId":7996,"journal":{"name":"Antisense & nucleic acid drug development","volume":"70 1","pages":"327-32"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antisense & nucleic acid drug development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/108729001753231704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We present data on efficient amplification of large number of DNA targets using a single-tube polymerase chain reaction (PCR). This is a further enhancement of our approach to multiplexed PCR based on PCR suppression, which allows multiple DNA amplification using only one sequence-specific primer per amplicon while the second primer is common for all targets (Broude, N.E., et al., Proc. Natl. Acad. Sci. USA 98, 206-211, 2001). The reaction conditions have been optimized for simultaneous synthesis of 30 DNA targets, mostly consisting of fragments containing single nucleotide polymorphisms (SNP). The size of the amplified fragments, derived from many different human chromosomes, varies from 100 to 600 bp. We conclude that this method has potential for highly multiplexed DNA amplification useful for SNP analyses, DNA diagnostics, and forensics.