Data-driven evaluation of machine learning models for climate control in operational smart greenhouses

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Ambient Intelligence and Smart Environments Pub Date : 2023-03-13 DOI:10.3233/ais-220441
Juan Morales-García, A. Bueno-Crespo, Raquel Martínez-España, José M. Cecilia
{"title":"Data-driven evaluation of machine learning models for climate control in operational smart greenhouses","authors":"Juan Morales-García, A. Bueno-Crespo, Raquel Martínez-España, José M. Cecilia","doi":"10.3233/ais-220441","DOIUrl":null,"url":null,"abstract":"Nowadays, human overpopulation is stressing our ecosystems in different ways, agriculture being a critical example as different predictions point towards food shortages in the near future. Accordingly, smart farming is becoming key to the optimization of natural resources so that different crops can be grown efficiently, consuming as few resources as possible. In particular, greenhouses have proved to be an effective way of producing a high volume of vegetables/fruits in a reduced space and within a short time span. Hence, optimizing greenhouse functioning results in less water use and nutrient consumption, less energy use, faster growth, and better product quality. In this article, we carry out an in-depth analysis of different machine learning (ML) models to improve climate control in smart greenhouses. As part of the analysis of the techniques we also considered 3 ways of pre-processing the data, as well as 12-hour and 24-hour forecasting. We focus on forecasting the indoor air temperature of an operational smart greenhouse, i.e. assessing the data anomalies that are inherently present in these environments due to the instability of IoT infrastructures. Several ML models are adapted to time series forecasting to provide an overview of these techniques and to find out which one performs better in this particular scenario. Our results show that, after statistically validating the results, the Random Forest Regression technique gives the best overall result with a mean absolute error of less than 1 degree Celsius.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"27 1","pages":"3-17"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-220441","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Nowadays, human overpopulation is stressing our ecosystems in different ways, agriculture being a critical example as different predictions point towards food shortages in the near future. Accordingly, smart farming is becoming key to the optimization of natural resources so that different crops can be grown efficiently, consuming as few resources as possible. In particular, greenhouses have proved to be an effective way of producing a high volume of vegetables/fruits in a reduced space and within a short time span. Hence, optimizing greenhouse functioning results in less water use and nutrient consumption, less energy use, faster growth, and better product quality. In this article, we carry out an in-depth analysis of different machine learning (ML) models to improve climate control in smart greenhouses. As part of the analysis of the techniques we also considered 3 ways of pre-processing the data, as well as 12-hour and 24-hour forecasting. We focus on forecasting the indoor air temperature of an operational smart greenhouse, i.e. assessing the data anomalies that are inherently present in these environments due to the instability of IoT infrastructures. Several ML models are adapted to time series forecasting to provide an overview of these techniques and to find out which one performs better in this particular scenario. Our results show that, after statistically validating the results, the Random Forest Regression technique gives the best overall result with a mean absolute error of less than 1 degree Celsius.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运行中的智能温室气候控制机器学习模型的数据驱动评估
如今,人口过剩正以不同的方式给我们的生态系统带来压力,农业就是一个重要的例子,因为不同的预测都指出在不久的将来会出现粮食短缺。因此,智能农业正成为优化自然资源的关键,以便在消耗尽可能少的资源的情况下,有效地种植不同的作物。特别是,温室已被证明是在较小的空间和较短的时间内生产大量蔬菜/水果的有效方法。因此,优化温室功能可以减少用水量和养分消耗,减少能源消耗,加快生长速度,提高产品质量。在本文中,我们对不同的机器学习(ML)模型进行了深入分析,以改善智能温室的气候控制。作为技术分析的一部分,我们还考虑了3种预处理数据的方法,以及12小时和24小时预测。我们专注于预测可操作的智能温室的室内空气温度,即评估由于物联网基础设施不稳定而在这些环境中固有存在的数据异常。几个ML模型适用于时间序列预测,以提供这些技术的概述,并找出哪一个在此特定场景中表现更好。我们的结果表明,在对结果进行统计验证后,随机森林回归技术给出了最佳的总体结果,平均绝对误差小于1摄氏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Ambient Intelligence and Smart Environments
Journal of Ambient Intelligence and Smart Environments COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
4.30
自引率
17.60%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.
期刊最新文献
Evaluation factors of adopting smart home IoT: The hybrid fuzzy MCDM approach for robot vacuum Hybrid fuzzy response threshold-based distributed task allocation in heterogeneous multi-robot environment From programming-to-modeling-to-prompts smart ubiquitous applications A UAV deployment strategy based on a probabilistic data coverage model for mobile CrowdSensing applications Memoization based priority-aware task management for QoS provisioning in IoT gateways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1