{"title":"The Parameterized Complexity of the k-Biclique Problem","authors":"Bingkai Lin","doi":"10.1145/3212622","DOIUrl":null,"url":null,"abstract":"Given a graph G and an integer k, the k-Biclique problem asks whether G contains a complete bipartite subgraph with k vertices on each side. Whether there is an f(k) ċ |G|O(1)-time algorithm, solving k-Biclique for some computable function f has been a longstanding open problem. We show that k-Biclique is W[1]-hard, which implies that such an f(k) ċ |G|O(1)-time algorithm does not exist under the hypothesis W[1] ≠ FPT from parameterized complexity theory. To prove this result, we give a reduction which, for every n-vertex graph G and small integer k, constructs a bipartite graph H = (L⊍ R,E) in time polynomial in n such that if G contains a clique with k vertices, then there are k(k − 1)/2 vertices in L with nθ(1/k) common neighbors; otherwise, any k(k − 1)/2 vertices in L have at most (k+1)! common neighbors. An additional feature of this reduction is that it creates a gap on the right side of the biclique. Such a gap might have further applications in proving hardness of approximation results. Assuming a randomized version of Exponential Time Hypothesis, we establish an f(k) ċ |G|o(√k)-time lower bound for k-Biclique for any computable function f. Combining our result with the work of Bulatov and Marx [2014], we obtain a dichotomy classification of the parameterized complexity of cardinality constraint satisfaction problems.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"1 1","pages":"1 - 23"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
Given a graph G and an integer k, the k-Biclique problem asks whether G contains a complete bipartite subgraph with k vertices on each side. Whether there is an f(k) ċ |G|O(1)-time algorithm, solving k-Biclique for some computable function f has been a longstanding open problem. We show that k-Biclique is W[1]-hard, which implies that such an f(k) ċ |G|O(1)-time algorithm does not exist under the hypothesis W[1] ≠ FPT from parameterized complexity theory. To prove this result, we give a reduction which, for every n-vertex graph G and small integer k, constructs a bipartite graph H = (L⊍ R,E) in time polynomial in n such that if G contains a clique with k vertices, then there are k(k − 1)/2 vertices in L with nθ(1/k) common neighbors; otherwise, any k(k − 1)/2 vertices in L have at most (k+1)! common neighbors. An additional feature of this reduction is that it creates a gap on the right side of the biclique. Such a gap might have further applications in proving hardness of approximation results. Assuming a randomized version of Exponential Time Hypothesis, we establish an f(k) ċ |G|o(√k)-time lower bound for k-Biclique for any computable function f. Combining our result with the work of Bulatov and Marx [2014], we obtain a dichotomy classification of the parameterized complexity of cardinality constraint satisfaction problems.