Forecasting the Real Estate Housing Prices Using a Novel Deep Learning Machine Model

Q3 Engineering Open Civil Engineering Journal Pub Date : 2023-03-04 DOI:10.28991/cej-sp2023-09-04
H. H. Mohamed, A. Ibrahim, Omar A. Hagras
{"title":"Forecasting the Real Estate Housing Prices Using a Novel Deep Learning Machine Model","authors":"H. H. Mohamed, A. Ibrahim, Omar A. Hagras","doi":"10.28991/cej-sp2023-09-04","DOIUrl":null,"url":null,"abstract":"There is an urgent need to forecast real estate unit prices because the average price of residential real estate is always fluctuating. This paper provides a real estate price prediction model based on supervised regression deep learning with 3 hidden layers, a Relu activation function, 100 neurons, and a Root Mean Square Propagation optimizer (RMS Prop). The model was developed using actual data collected from 28 Egyptian cities between 2014 and 2022. The model can forecast the price of a real estate unit based on 27 different variables. The model is created in two stages: adjusting the parameters to obtain the best ones using a sensitivity k-fold technique, then optimizing the result. 85 percent of the real estate unit data gathered was used in training and developing the model, while the other 15 percent was used in validating and testing. By using a dropout regularization technique of 0.60 on the model layers, the final developed model had a maximum error of 10.58%. After validation, the model had a maximum error of about 9.50%. A graphical user interface (GUI) tool is developed to make use of the final predictive model, which is very simple for real estate developers and decision-makers to use. Doi: 10.28991/CEJ-SP2023-09-04 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-sp2023-09-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

There is an urgent need to forecast real estate unit prices because the average price of residential real estate is always fluctuating. This paper provides a real estate price prediction model based on supervised regression deep learning with 3 hidden layers, a Relu activation function, 100 neurons, and a Root Mean Square Propagation optimizer (RMS Prop). The model was developed using actual data collected from 28 Egyptian cities between 2014 and 2022. The model can forecast the price of a real estate unit based on 27 different variables. The model is created in two stages: adjusting the parameters to obtain the best ones using a sensitivity k-fold technique, then optimizing the result. 85 percent of the real estate unit data gathered was used in training and developing the model, while the other 15 percent was used in validating and testing. By using a dropout regularization technique of 0.60 on the model layers, the final developed model had a maximum error of 10.58%. After validation, the model had a maximum error of about 9.50%. A graphical user interface (GUI) tool is developed to make use of the final predictive model, which is very simple for real estate developers and decision-makers to use. Doi: 10.28991/CEJ-SP2023-09-04 Full Text: PDF
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用一种新的深度学习机器模型预测房地产房价
由于住宅房地产的平均价格总是波动的,因此迫切需要对房地产单价进行预测。本文提出了一个基于监督回归深度学习的房地产价格预测模型,该模型包含3个隐藏层、一个Relu激活函数、100个神经元和一个均方根传播优化器(RMS Prop)。该模型是根据2014年至2022年间从埃及28个城市收集的实际数据开发的。该模型可以基于27个不同的变量来预测房地产单位的价格。模型的建立分为两个阶段:首先利用灵敏度k-fold技术调整参数以获得最佳参数,然后对结果进行优化。所收集的85%的房地产单位数据用于培训和开发模型,而另外15%用于验证和测试。在模型层上采用0.60的dropout正则化技术,最终建立的模型最大误差为10.58%。经验证,模型的最大误差约为9.50%。开发了一个图形用户界面(GUI)工具来利用最终的预测模型,该模型对于房地产开发商和决策者来说非常简单易用。Doi: 10.28991/CEJ-SP2023-09-04全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
期刊最新文献
Optimizing the Flexural Behavior of Bamboo Reinforced Concrete Beams Containing Cassava Peel Ash using Response Surface Methodology The Hydrodynamic Model Application for Future Coastal Zone Development in Remote Area Structural Strengthening of Insufficiently Designed Reinforced Concrete T-Beams using CFRP Composites Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading Post Fire Behavior of Structural Reinforced Concrete Member (Slab) Repairing with Various Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1