M. Dursun, Seral Özşen, S. Günes, B. Akdemir, Ş. Yosunkaya
{"title":"Automated elimination of EOG artifacts in sleep EEG using regression method","authors":"M. Dursun, Seral Özşen, S. Günes, B. Akdemir, Ş. Yosunkaya","doi":"10.3906/ELK-1809-180","DOIUrl":null,"url":null,"abstract":"Sleep electroencephalogram (EEG) signal is an important clinical tool for automatic sleep staging process. Sleep EEG signal is effected by artifacts and other biological signal sources, such as electrooculogram (EOG) and electromyogram (EMG), and since it is effected, its clinical utility reduces. Therefore, eliminating EOG artifacts from sleep EEG signal is a major challenge for automatic sleep staging. We have studied the effects of EOG signals on sleep EEG and tried to remove them from the EEG signals by using regression method. The EEG and EOG recordings of seven subjects were obtained from the Sleep Research Laboratory of Meram Medicine Faculty of Necmettin Erbakan University. A dataset consisting of 58 h and 6941 epochs was used in the research. Then, in order to see the consequences of this process, we classified pure sleep EEG and artifact-eliminated EEG signals with artificial neural networks (ANN). The results showed that elimination of EOG artifacts raised the classification accuracy on each subject at a range of 1%– 1.5%. However, this increase was obtained for a single parameter. This can be regarded as an important improvement if the whole system is considered. However, different artifact elimination strategies combined with different classification methods for another sleep EEG artifact may give higher accuracy differences between original and purified signals.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"133 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1809-180","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Sleep electroencephalogram (EEG) signal is an important clinical tool for automatic sleep staging process. Sleep EEG signal is effected by artifacts and other biological signal sources, such as electrooculogram (EOG) and electromyogram (EMG), and since it is effected, its clinical utility reduces. Therefore, eliminating EOG artifacts from sleep EEG signal is a major challenge for automatic sleep staging. We have studied the effects of EOG signals on sleep EEG and tried to remove them from the EEG signals by using regression method. The EEG and EOG recordings of seven subjects were obtained from the Sleep Research Laboratory of Meram Medicine Faculty of Necmettin Erbakan University. A dataset consisting of 58 h and 6941 epochs was used in the research. Then, in order to see the consequences of this process, we classified pure sleep EEG and artifact-eliminated EEG signals with artificial neural networks (ANN). The results showed that elimination of EOG artifacts raised the classification accuracy on each subject at a range of 1%– 1.5%. However, this increase was obtained for a single parameter. This can be regarded as an important improvement if the whole system is considered. However, different artifact elimination strategies combined with different classification methods for another sleep EEG artifact may give higher accuracy differences between original and purified signals.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.