T. G. Yugova, A. Belov, V. E. Kanevskii, E. I. Kladova, S. Knyazev, I. B. Parfent'eva
{"title":"Comparison between results of optical and electrical measurements of free electron concentration in n-InAs specimens","authors":"T. G. Yugova, A. Belov, V. E. Kanevskii, E. I. Kladova, S. Knyazev, I. B. Parfent'eva","doi":"10.3897/j.moem.7.3.76700","DOIUrl":null,"url":null,"abstract":"A theoretical model has been developed for determining the free electron concentration in n-InAs specimens from characteristic points in far IR reflection spectra. We show that this determination requires plasmon-phonon coupling be taken into account, otherwise the measured electron concentration proves to be overestimated. A correlation between the electron concentration Nopt and the characteristic wavenumber ν+ has been calculated and proves to be well fit by a third order polynomial. The test specimens have been obtained by tin or sulfur doping of indium arsenide. The electron concentration in the specimens has been measured at room temperature using two methods: the optical method developed by the Authors (Nopt) and the conventional four-probe Hall method (the Van der Pau method, NHall). The reflecting surfaces of the specimens have been chemically polished or fine abrasive ground. The condition Nopt > NHall has been shown to hold for all the test specimens. The difference between the optical and the Hall electron concentrations is greater for specimens having polished reflecting surfaces. The experimental data have been compared with earlier data for n-GaAs. A qualitative model explaining the experimental data has been suggested.","PeriodicalId":18610,"journal":{"name":"Modern Electronic Materials","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/j.moem.7.3.76700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A theoretical model has been developed for determining the free electron concentration in n-InAs specimens from characteristic points in far IR reflection spectra. We show that this determination requires plasmon-phonon coupling be taken into account, otherwise the measured electron concentration proves to be overestimated. A correlation between the electron concentration Nopt and the characteristic wavenumber ν+ has been calculated and proves to be well fit by a third order polynomial. The test specimens have been obtained by tin or sulfur doping of indium arsenide. The electron concentration in the specimens has been measured at room temperature using two methods: the optical method developed by the Authors (Nopt) and the conventional four-probe Hall method (the Van der Pau method, NHall). The reflecting surfaces of the specimens have been chemically polished or fine abrasive ground. The condition Nopt > NHall has been shown to hold for all the test specimens. The difference between the optical and the Hall electron concentrations is greater for specimens having polished reflecting surfaces. The experimental data have been compared with earlier data for n-GaAs. A qualitative model explaining the experimental data has been suggested.
建立了从远红外反射光谱特征点测定n-InAs样品中自由电子浓度的理论模型。我们表明,这种测定需要考虑等离子体-声子耦合,否则测量的电子浓度被证明是高估的。计算了电子浓度Nopt与特征波数ν+之间的关系,并用三阶多项式很好地拟合。试样是用锡或硫掺杂砷化铟制成的。在室温下,用两种方法测量了样品中的电子浓度:由作者(Nopt)开发的光学方法和传统的四探针霍尔方法(Van der Pau法,NHall)。样品的反射表面已经过化学抛光或精细研磨。情况Nopt > NHall已被证明适用于所有的测试样本。对于具有抛光反射表面的样品,光学电子浓度和霍尔电子浓度之间的差异更大。实验数据与n-GaAs的早期数据进行了比较。提出了一个定性模型来解释实验数据。