{"title":"Multiellipsoidal extended target tracking with known extent using sequential Monte Carlo framework","authors":"S. Kara, Emre Özkan","doi":"10.3906/ELK-1811-52","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a variant of the extended target tracking (ETT) problem, namely the multiel- lipsoidal ETT problem. In multiellipsoidal ETT, target extent is represented by multiple ellipses, which correspond to the origin of the measurements on the target surface. The problem involves estimating the target’s kinematic state and solving the association problem between the measurements and the ellipses. We cast the problem in a sequential Monte Carlo (SMC) framework and investigate different marginalization strategies to find an efficient particle filter. Under the known extent assumption, we define association variables to find the correct association between the measurements and the ellipses; hence, the posterior involves both discrete and continuous random variables. By expressing the measurement likelihood as a mixture of Gaussians we derive and employ a marginalized particle filter for the independent association variables without sampling the discrete states. We compare the performance of the method with its alternatives and illustrate the gain in nonstandard marginalization.","PeriodicalId":49410,"journal":{"name":"Turkish Journal of Electrical Engineering and Computer Sciences","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Electrical Engineering and Computer Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3906/ELK-1811-52","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we consider a variant of the extended target tracking (ETT) problem, namely the multiel- lipsoidal ETT problem. In multiellipsoidal ETT, target extent is represented by multiple ellipses, which correspond to the origin of the measurements on the target surface. The problem involves estimating the target’s kinematic state and solving the association problem between the measurements and the ellipses. We cast the problem in a sequential Monte Carlo (SMC) framework and investigate different marginalization strategies to find an efficient particle filter. Under the known extent assumption, we define association variables to find the correct association between the measurements and the ellipses; hence, the posterior involves both discrete and continuous random variables. By expressing the measurement likelihood as a mixture of Gaussians we derive and employ a marginalized particle filter for the independent association variables without sampling the discrete states. We compare the performance of the method with its alternatives and illustrate the gain in nonstandard marginalization.
期刊介绍:
The Turkish Journal of Electrical Engineering & Computer Sciences is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK)
Accepts English-language manuscripts in the areas of power and energy, environmental sustainability and energy efficiency, electronics, industry applications, control systems, information and systems, applied electromagnetics, communications, signal and image processing, tomographic image reconstruction, face recognition, biometrics, speech processing, video processing and analysis, object recognition, classification, feature extraction, parallel and distributed computing, cognitive systems, interaction, robotics, digital libraries and content, personalized healthcare, ICT for mobility, sensors, and artificial intelligence.
Contribution is open to researchers of all nationalities.