{"title":"Hydraulic pressure energy harvester enhanced by Helmholtz resonator","authors":"E. Skow, Zachary Koontz, K. Cunefare, A. Erturk","doi":"10.1117/12.2084343","DOIUrl":null,"url":null,"abstract":"Hydraulic pressure energy harvesters (HPEH) are devices that convert the dynamic pressure within hydraulic systems into usable electrical power through axially loaded piezoelectric stacks excited off-resonance by the fluid. Within hydraulic systems, the dominant frequency is typically a harmonic of the pump operating frequency. The pressure fluctuations coupled with the piezoelectric stack can be amplified by creating a housing design that includes a Helmholtz resonator tuned to the dominant frequency of the fluid excitation. A Helmholtz resonator is an acoustic device that consists of a cavity coupled to a fluid medium via a neck, or in this case a port connection to the fluid flow, that acts as an amplifier when within the bandwidth of its resonance. The implementation of a piezoelectric stack within the HPEH allows for a Helmholtz resonator to be included within the fluidic environment despite the significantly higher than air static pressures typical of fluid hydraulic systems (on the order of one to tens of MPa). The resistive losses within the system, such as from energy harvesting and viscous losses, can also be used to increase the bandwidth of the resonance; thus increasing the utility of the device. This paper investigates the design, modeling, and performance of hydraulic pressure energy harvesters utilizing a Helmholtz resonator design.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"2 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/12.2084343","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 6
Abstract
Hydraulic pressure energy harvesters (HPEH) are devices that convert the dynamic pressure within hydraulic systems into usable electrical power through axially loaded piezoelectric stacks excited off-resonance by the fluid. Within hydraulic systems, the dominant frequency is typically a harmonic of the pump operating frequency. The pressure fluctuations coupled with the piezoelectric stack can be amplified by creating a housing design that includes a Helmholtz resonator tuned to the dominant frequency of the fluid excitation. A Helmholtz resonator is an acoustic device that consists of a cavity coupled to a fluid medium via a neck, or in this case a port connection to the fluid flow, that acts as an amplifier when within the bandwidth of its resonance. The implementation of a piezoelectric stack within the HPEH allows for a Helmholtz resonator to be included within the fluidic environment despite the significantly higher than air static pressures typical of fluid hydraulic systems (on the order of one to tens of MPa). The resistive losses within the system, such as from energy harvesting and viscous losses, can also be used to increase the bandwidth of the resonance; thus increasing the utility of the device. This paper investigates the design, modeling, and performance of hydraulic pressure energy harvesters utilizing a Helmholtz resonator design.
期刊介绍:
An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include:
Sensors/Actuators(Materials/devices/ informatics/networking)
Structural Health Monitoring and Control
Diagnosis/Prognosis
Life Cycle Engineering(planning/design/ maintenance/renewal)
and related areas.