The features of haloacetic acid oxidation that contribute to stratospheric ozone depletion

IF 2 4区 环境科学与生态学 Q3 CHEMISTRY, ANALYTICAL Environmental Chemistry Pub Date : 2022-04-12 DOI:10.1071/en21140
S. Savilov, N. Strokova, A. Ivanov, G. Kuramshina, I. Morozov
{"title":"The features of haloacetic acid oxidation that contribute to stratospheric ozone depletion","authors":"S. Savilov, N. Strokova, A. Ivanov, G. Kuramshina, I. Morozov","doi":"10.1071/en21140","DOIUrl":null,"url":null,"abstract":"Environmental context Due to The Montreal Protocol, stratospheric ozone concentration is slowly regenerating, however, the recovery rate is slower than predicted by photochemical models. FTIR spectroscopy together with quantum chemical calculations confirmed that ozone reacts with halogenated acids adsorbed at a model aerosol surface. Reactions occur at low temperatures without photochemical activation with formation of halogen oxides that are known to promote catalytic cycles of ozone depletion. Abstract The present work addresses the problem of stratospheric ozone depletion. While gas phase and photochemically induced reactions of ozone are well studied, the mechanisms of heterogeneous O3 interactions with different halogenated species still remain uncertain. An in situ FTIR investigation of low-temperature heterogeneous reactions of ozone and haloacetic acids in conditions close to stratospheric was performed and supported by ab initio quantum chemical calculations. Products of ozone reaction with differently chlorine and bromine-substituted acetic acids were identified and possible reactions pathways were suggested. Ozone can attach to a carbon atom to release a halogen atom that forms a halogen oxide. Halogen oxide in its turn can take part in the catalytic cycles of ozone depletion. Suggested reaction pathways leading to the additional release of the chlorine oxides can enhance the atmospheric models that calculate ozone concentration.","PeriodicalId":11714,"journal":{"name":"Environmental Chemistry","volume":"11 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1071/en21140","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental context Due to The Montreal Protocol, stratospheric ozone concentration is slowly regenerating, however, the recovery rate is slower than predicted by photochemical models. FTIR spectroscopy together with quantum chemical calculations confirmed that ozone reacts with halogenated acids adsorbed at a model aerosol surface. Reactions occur at low temperatures without photochemical activation with formation of halogen oxides that are known to promote catalytic cycles of ozone depletion. Abstract The present work addresses the problem of stratospheric ozone depletion. While gas phase and photochemically induced reactions of ozone are well studied, the mechanisms of heterogeneous O3 interactions with different halogenated species still remain uncertain. An in situ FTIR investigation of low-temperature heterogeneous reactions of ozone and haloacetic acids in conditions close to stratospheric was performed and supported by ab initio quantum chemical calculations. Products of ozone reaction with differently chlorine and bromine-substituted acetic acids were identified and possible reactions pathways were suggested. Ozone can attach to a carbon atom to release a halogen atom that forms a halogen oxide. Halogen oxide in its turn can take part in the catalytic cycles of ozone depletion. Suggested reaction pathways leading to the additional release of the chlorine oxides can enhance the atmospheric models that calculate ozone concentration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
导致平流层臭氧耗竭的卤乙酸氧化的特征
由于《蒙特利尔议定书》的签订,平流层臭氧浓度正在缓慢再生,然而,恢复速度比光化学模型预测的要慢。FTIR光谱和量子化学计算证实,臭氧与吸附在模型气溶胶表面的卤化酸发生反应。反应在低温下发生,没有光化学激活,形成卤素氧化物,已知卤素氧化物促进臭氧消耗的催化循环。摘要:本文研究了平流层臭氧耗竭问题。虽然臭氧的气相和光化学诱导反应已经得到了很好的研究,但O3与不同卤化物质相互作用的机理仍然不确定。在接近平流层的条件下,对臭氧和卤乙酸的低温非均相反应进行了原位傅立叶变换红外(FTIR)研究,并得到从头算量子化学计算的支持。鉴定了不同氯代和溴代乙酸与臭氧反应的产物,并提出了可能的反应途径。臭氧可以附着在碳原子上释放出卤素原子,形成卤素氧化物。卤素氧化物又可以参与臭氧消耗的催化循环。提出的导致氯氧化物额外释放的反应途径可以增强计算臭氧浓度的大气模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry
Environmental Chemistry 环境科学-分析化学
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: Environmental Chemistry publishes manuscripts addressing the chemistry of the environment (air, water, earth, and biota), including the behaviour and impacts of contaminants and other anthropogenic disturbances. The scope encompasses atmospheric chemistry, geochemistry and biogeochemistry, climate change, marine and freshwater chemistry, polar chemistry, fire chemistry, soil and sediment chemistry, and chemical aspects of ecotoxicology. Papers that take an interdisciplinary approach, while advancing our understanding of the linkages between chemistry and physical or biological processes, are particularly encouraged. While focusing on the publication of important original research and timely reviews, the journal also publishes essays and opinion pieces on issues of importance to environmental scientists, such as policy and funding. Papers should be written in a style that is accessible to those outside the field, as the readership will include - in addition to chemists - biologists, toxicologists, soil scientists, and workers from government and industrial institutions. All manuscripts are rigorously peer-reviewed and professionally copy-edited. Environmental Chemistry is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
Molecular composition and the impact of fuel moisture content on fresh primary organic aerosol emissions during laboratory combustion of Ponderosa pine needles. A review of inorganic contaminants in Australian marine mammals, birds and turtles Cadmium thiosulfate complexes can be assimilated by a green alga via a sulfate transporter but do not increase Cd toxicity <i>Corrigendum to</i>: Cadmium thiosulfate complexes can be assimilated by a green alga via a sulfate transporter but do not increase Cd toxicity <i>Corrigendum to</i>: Dedication to Professor Kevin Francesconi, father of organoarsenicals in the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1