The misbelief in delay scheduling

Derek Schatzlein, Srivatsan Ravi, Youngtae Noh, Masoud Saeida Ardekani, P. Eugster
{"title":"The misbelief in delay scheduling","authors":"Derek Schatzlein, Srivatsan Ravi, Youngtae Noh, Masoud Saeida Ardekani, P. Eugster","doi":"10.1145/2955193.2955203","DOIUrl":null,"url":null,"abstract":"Big-data processing frameworks like Hadoop and Spark, often used in multi-user environments, have struggled to achieve a balance between the full utilization of cluster resources and fairness between users. In particular, data locality becomes a concern, as enforcing fairness policies may cause poor placement of tasks in relation to the data on which they operate. To combat this, the schedulers in many frameworks use a heuristic called delay scheduling, which involves waiting for a short, constant interval for data-local task slots to become free if none are available; however, a fixed delay interval is inefficient, as the ideal time to delay varies depending on input data size, network conditions, and other factors.\n We propose an adaptive solution (Dynamic Delay Scheduling), which uses a simple feedback metric from finished tasks to adapt the delay scheduling interval for subsequent tasks at runtime. We present a dynamic delay implementation in Spark, and show that it outperforms a fixed delay in TPC-H benchmarks. Our preliminary experiments confirm our intuition that job latency in batch-processing scheduling can be improved using simple adaptive techniques with almost no extra state overhead.","PeriodicalId":91161,"journal":{"name":"Proceedings. Data Compression Conference","volume":"45 1","pages":"9:1-9:6"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2955193.2955203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Big-data processing frameworks like Hadoop and Spark, often used in multi-user environments, have struggled to achieve a balance between the full utilization of cluster resources and fairness between users. In particular, data locality becomes a concern, as enforcing fairness policies may cause poor placement of tasks in relation to the data on which they operate. To combat this, the schedulers in many frameworks use a heuristic called delay scheduling, which involves waiting for a short, constant interval for data-local task slots to become free if none are available; however, a fixed delay interval is inefficient, as the ideal time to delay varies depending on input data size, network conditions, and other factors. We propose an adaptive solution (Dynamic Delay Scheduling), which uses a simple feedback metric from finished tasks to adapt the delay scheduling interval for subsequent tasks at runtime. We present a dynamic delay implementation in Spark, and show that it outperforms a fixed delay in TPC-H benchmarks. Our preliminary experiments confirm our intuition that job latency in batch-processing scheduling can be improved using simple adaptive techniques with almost no extra state overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对延迟调度的误解
像Hadoop和Spark这样的大数据处理框架,经常用于多用户环境,一直在努力实现集群资源的充分利用和用户之间的公平之间的平衡。特别是,数据位置成为一个问题,因为强制执行公平策略可能会导致任务与其操作的数据相关的位置不佳。为了解决这个问题,许多框架中的调度器使用一种称为延迟调度的启发式方法,该方法包括等待一个短而恒定的间隔,以便在没有可用的数据本地任务槽时空闲;但是,固定的延迟间隔是低效的,因为理想的延迟时间取决于输入数据大小、网络条件和其他因素。我们提出了一种自适应的解决方案(动态延迟调度),它使用一个简单的从已完成的任务反馈度量来适应后续任务在运行时的延迟调度间隔。我们在Spark中提出了一个动态延迟实现,并表明它在TPC-H基准测试中优于固定延迟。我们的初步实验证实了我们的直觉,即批处理调度中的作业延迟可以使用简单的自适应技术来改进,几乎没有额外的状态开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster Maximal Exact Matches with Lazy LCP Evaluation. Recursive Prefix-Free Parsing for Building Big BWTs. PHONI: Streamed Matching Statistics with Multi-Genome References. Client-Driven Transmission of JPEG2000 Image Sequences Using Motion Compensated Conditional Replenishment GeneComp, a new reference-based compressor for SAM files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1