{"title":"Crowd-Sourced AI based Indoor Localization using Support Vector Regression and Pedestrian Dead Reckoning","authors":"Thandu Nagaraju, R. Murugeswari","doi":"10.2174/2210327913666230523114125","DOIUrl":null,"url":null,"abstract":"\n\nArtificial intelligence (AI) is expanding in the market daily to assist humans in a variety of ways. However, as these models are expensive, there is still a gap in the availability of AI products to the common public with high component dependency.\n\n\n\nTo address the issue of additional component dependency on AI products, we propose a model that can use available Smartphone resources to perceive real-world huddles and assist ordinary people with their daily needs. The proposed AI model is to predict the user’s indoor position (Node) at the computer science and engineering block of CMR Institute of Technology (CMRIT) by using Smartphone sensors and wireless signals. We used SVR to predict the regular walk steps needed between two Nodes and Pedestrian Dead Reckoning (PDR) to predict the walk steps needed while the signal was lost in the indoor environment.\n\n\n\nThe Support vector regression (SVR) models make the locations to be available within the specified building boundaries for proper guidance. The PDR approach supports the user while signal loss between two Received Signal Strength Indicators (RSSI). The Pedestrian dead reckoning - Support Vector Regression (PD-SVR) results are showing 98% accuracy in NODE predictions with routing tables. The indoor positioning is 100% accurate with dynamic crowd-sourcing Node preparation.\n\n\n\nThe results are compared with other indoor navigation models K-nearest neighbor (KNN) and DF-SVM are given 95% accurate NODE estimation with minimal need for network components.\n","PeriodicalId":37686,"journal":{"name":"International Journal of Sensors, Wireless Communications and Control","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sensors, Wireless Communications and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210327913666230523114125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) is expanding in the market daily to assist humans in a variety of ways. However, as these models are expensive, there is still a gap in the availability of AI products to the common public with high component dependency.
To address the issue of additional component dependency on AI products, we propose a model that can use available Smartphone resources to perceive real-world huddles and assist ordinary people with their daily needs. The proposed AI model is to predict the user’s indoor position (Node) at the computer science and engineering block of CMR Institute of Technology (CMRIT) by using Smartphone sensors and wireless signals. We used SVR to predict the regular walk steps needed between two Nodes and Pedestrian Dead Reckoning (PDR) to predict the walk steps needed while the signal was lost in the indoor environment.
The Support vector regression (SVR) models make the locations to be available within the specified building boundaries for proper guidance. The PDR approach supports the user while signal loss between two Received Signal Strength Indicators (RSSI). The Pedestrian dead reckoning - Support Vector Regression (PD-SVR) results are showing 98% accuracy in NODE predictions with routing tables. The indoor positioning is 100% accurate with dynamic crowd-sourcing Node preparation.
The results are compared with other indoor navigation models K-nearest neighbor (KNN) and DF-SVM are given 95% accurate NODE estimation with minimal need for network components.
期刊介绍:
International Journal of Sensors, Wireless Communications and Control publishes timely research articles, full-length/ mini reviews and communications on these three strongly related areas, with emphasis on networked control systems whose sensors are interconnected via wireless communication networks. The emergence of high speed wireless network technologies allows a cluster of devices to be linked together economically to form a distributed system. Wireless communication is playing an increasingly important role in such distributed systems. Transmitting sensor measurements and control commands over wireless links allows rapid deployment, flexible installation, fully mobile operation and prevents the cable wear and tear problem in industrial automation, healthcare and environmental assessment. Wireless networked systems has raised and continues to raise fundamental challenges in the fields of science, engineering and industrial applications, hence, more new modelling techniques, problem formulations and solutions are required.