{"title":"Study of bendamustine anticancer drug in gaseous and in a few selected liquid solvents phases using functional density theory (DFT)","authors":"M. Deilam, A. Ghasemi̇, F. Ashrafi̇","doi":"10.33945/sami/ecc.2019.6.3","DOIUrl":null,"url":null,"abstract":"In this research, Bendamustine anticancer drug in main and excited states in gaseous phase and in water, ethanol and methanol solvent phases have studied, using DFT and at MPW1PW91/6-311++G(d, p) theoretical level. The molecules of solvent affected the equilibrium structure of species. The effects of solvents have studied by Polarized continuum model (PCM). The optimized structural parameters in gaseous and in water, ethanol and methanol solvent phases as frequency data, relative energy, dipole moment, the energy of highest occupied molecular orbital (HOMO), the energy of lowest unoccupied molecular orbital (LUMO), density functional graphs and gap energies have calculated. The results of theoretical computations confirm that the structure of drug, in both the main and the excited states, is more stable in liquid phase than in gaseous phase, and most stable in water. The computation results confirm that the drug stability increase by increasing in polarizability of solvent.","PeriodicalId":11871,"journal":{"name":"Eurasian Chemical Communications","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33945/sami/ecc.2019.6.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 2
Abstract
In this research, Bendamustine anticancer drug in main and excited states in gaseous phase and in water, ethanol and methanol solvent phases have studied, using DFT and at MPW1PW91/6-311++G(d, p) theoretical level. The molecules of solvent affected the equilibrium structure of species. The effects of solvents have studied by Polarized continuum model (PCM). The optimized structural parameters in gaseous and in water, ethanol and methanol solvent phases as frequency data, relative energy, dipole moment, the energy of highest occupied molecular orbital (HOMO), the energy of lowest unoccupied molecular orbital (LUMO), density functional graphs and gap energies have calculated. The results of theoretical computations confirm that the structure of drug, in both the main and the excited states, is more stable in liquid phase than in gaseous phase, and most stable in water. The computation results confirm that the drug stability increase by increasing in polarizability of solvent.