Hybrid Deep Learning Implementation for Crop Yield Prediction

Halit Çetiner
{"title":"Hybrid Deep Learning Implementation for Crop Yield Prediction","authors":"Halit Çetiner","doi":"10.35414/akufemubid.1116187","DOIUrl":null,"url":null,"abstract":"Agriculture producers should be supported technologically in order to continue production in a way that meets the worldwide food supply and demand. Automatic realization of crop yield estimation calculation is a desired need of farmers. Automatic yield estimation also facilitates the work of agricultural producers with different goals such as imports and exports. To achieve the stated objectives, deep learning models have been developed that estimated yield using parameters such as the amount of water per hectare, the average amount of sunlight received by the hectare, the amount of fertilization per hectare, the number of pesticides used per hectare, and the area of cultivation. With the hybrid model created by combining the strengths of the LSTM and CNN models developed within the scope of this article, the success rate of data prediction has increased with fine adjustments. Success rates of 89.71 R2, 0.0035 MSE, 0.0248 RMSE, 0.0461 MAE, and 10.10 MAPE have been achieved with the Proposed hybrid model. This model is competitive with similar studies with the stated values.","PeriodicalId":7433,"journal":{"name":"Afyon Kocatepe University Journal of Sciences and Engineering","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afyon Kocatepe University Journal of Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35414/akufemubid.1116187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Agriculture producers should be supported technologically in order to continue production in a way that meets the worldwide food supply and demand. Automatic realization of crop yield estimation calculation is a desired need of farmers. Automatic yield estimation also facilitates the work of agricultural producers with different goals such as imports and exports. To achieve the stated objectives, deep learning models have been developed that estimated yield using parameters such as the amount of water per hectare, the average amount of sunlight received by the hectare, the amount of fertilization per hectare, the number of pesticides used per hectare, and the area of cultivation. With the hybrid model created by combining the strengths of the LSTM and CNN models developed within the scope of this article, the success rate of data prediction has increased with fine adjustments. Success rates of 89.71 R2, 0.0035 MSE, 0.0248 RMSE, 0.0461 MAE, and 10.10 MAPE have been achieved with the Proposed hybrid model. This model is competitive with similar studies with the stated values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作物产量预测的混合深度学习实现
应在技术上支持农业生产者,以便继续生产,以满足全世界的粮食供应和需求。农作物产量估算计算的自动化实现是农民的迫切需要。自动产量估算也方便了不同目标的农业生产者的工作,如进口和出口。为了实现既定目标,已经开发了深度学习模型,使用诸如每公顷水量、每公顷平均日照量、每公顷施肥量、每公顷使用的农药数量和种植面积等参数来估计产量。结合本文范围内开发的LSTM和CNN模型的优点创建的混合模型,经过精细调整,数据预测的成功率有所提高。该混合模型的成功率分别为89.71 R2、0.0035 MSE、0.0248 RMSE、0.0461 MAE和10.10 MAPE。该模型与具有陈述值的类似研究具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kazıklarla Güçlendirilmiş Şevlerde Monte Carlo Simülasyon Yöntemi Uygulaması Microencapsulation and Characterization Studies of Brassica oleracea var. capitata L. (Cabbage) Plant Extract Using Response Surface Methodology Genetik Algoritma ile Optimize Edilmiş Yenilikçi bir Gecikmeli Rezonatör ile Çeyrek Taşıt Modelinin Kontrolü Şuhut (Afyonkarahisar) Batısındaki Alterasyon Zonlarının Mineralojik ve Jeokimyasal Özellikleri Development Of a New Weapon System Against Unmanned Aerial Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1