Varot Premtoon, James Koppel, Armando Solar-Lezama
{"title":"Semantic code search via equational reasoning","authors":"Varot Premtoon, James Koppel, Armando Solar-Lezama","doi":"10.1145/3385412.3386001","DOIUrl":null,"url":null,"abstract":"We present a new approach to semantic code search based on equational reasoning, and the Yogo tool implementing this approach. Our approach works by considering not only the dataflow graph of a function, but also the dataflow graphs of all equivalent functions reachable via a set of rewrite rules. In doing so, it can recognize an operation even if it uses alternate APIs, is in a different but mathematically-equivalent form, is split apart with temporary variables, or is interleaved with other code. Furthermore, it can recognize when code is an instance of some higher-level concept such as iterating through a file. Because of this, from a single query, Yogo can find equivalent code in multiple languages. Our evaluation further shows the utility of Yogo beyond code search: encoding a buggy pattern as a Yogo query, we found a bug in Oracle’s Graal compiler which had been missed by a hand-written static analyzer designed for that exact kind of bug. Yogo is built on the Cubix multi-language infrastructure, and currently supports Java and Python.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3386001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
We present a new approach to semantic code search based on equational reasoning, and the Yogo tool implementing this approach. Our approach works by considering not only the dataflow graph of a function, but also the dataflow graphs of all equivalent functions reachable via a set of rewrite rules. In doing so, it can recognize an operation even if it uses alternate APIs, is in a different but mathematically-equivalent form, is split apart with temporary variables, or is interleaved with other code. Furthermore, it can recognize when code is an instance of some higher-level concept such as iterating through a file. Because of this, from a single query, Yogo can find equivalent code in multiple languages. Our evaluation further shows the utility of Yogo beyond code search: encoding a buggy pattern as a Yogo query, we found a bug in Oracle’s Graal compiler which had been missed by a hand-written static analyzer designed for that exact kind of bug. Yogo is built on the Cubix multi-language infrastructure, and currently supports Java and Python.