An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture

4区 农林科学 Q2 Agricultural and Biological Sciences Soil Science Pub Date : 2021-07-23 DOI:10.5194/SOIL-2021-72
Elad Levintal, Y. Ganot, G. Taylor, P. Freer-Smith, K. Suvočarev, H. Dahlke
{"title":"An underground, wireless, open-source, low-cost system for monitoring oxygen, temperature, and soil moisture","authors":"Elad Levintal, Y. Ganot, G. Taylor, P. Freer-Smith, K. Suvočarev, H. Dahlke","doi":"10.5194/SOIL-2021-72","DOIUrl":null,"url":null,"abstract":"Abstract. The use of wireless sensor networks in the measurement of soil parameters represents one of the least invasive methods available to date. Wireless sensors pose the least disturbance to soil structure and having fewer aboveground cables reduce the risk of undesired equipment damage and potential data loss. However, implementing wireless sensor networks in field studies usually requires advanced and costly engineering knowledge. This study presents a new underground, wireless, open-source, low-cost system for monitoring soil oxygen, temperature, and soil moisture. The process of system design, assembly, programming, deployment, and power management is presented. The system can be left underground for several years without the need for changing the battery. Emphasis was given on modularity so that it can be easily duplicated or changed if needed, and deployed without previous engineering knowledge. Data from this type of system have a wide range of applications, including precision agriculture and high-resolution modelling.\n","PeriodicalId":22015,"journal":{"name":"Soil Science","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/SOIL-2021-72","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract. The use of wireless sensor networks in the measurement of soil parameters represents one of the least invasive methods available to date. Wireless sensors pose the least disturbance to soil structure and having fewer aboveground cables reduce the risk of undesired equipment damage and potential data loss. However, implementing wireless sensor networks in field studies usually requires advanced and costly engineering knowledge. This study presents a new underground, wireless, open-source, low-cost system for monitoring soil oxygen, temperature, and soil moisture. The process of system design, assembly, programming, deployment, and power management is presented. The system can be left underground for several years without the need for changing the battery. Emphasis was given on modularity so that it can be easily duplicated or changed if needed, and deployed without previous engineering knowledge. Data from this type of system have a wide range of applications, including precision agriculture and high-resolution modelling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种地下、无线、开源、低成本的系统,用于监测氧气、温度和土壤湿度
摘要在测量土壤参数中使用无线传感器网络是迄今为止可用的侵入性最小的方法之一。无线传感器对土壤结构的干扰最小,并且地面电缆较少,可以降低设备损坏和潜在数据丢失的风险。然而,在现场研究中实现无线传感器网络通常需要先进且昂贵的工程知识。本研究提出了一种新的地下、无线、开源、低成本的土壤氧、温度和土壤湿度监测系统。介绍了系统的设计、装配、编程、部署和电源管理过程。该系统可以在地下放置数年而不需要更换电池。其重点是模块化,因此可以在需要时轻松复制或更改,并且无需先前的工程知识即可进行部署。来自这类系统的数据具有广泛的应用,包括精准农业和高分辨率建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Science
Soil Science 农林科学-土壤科学
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
4.4 months
期刊介绍: Cessation.Soil Science satisfies the professional needs of all scientists and laboratory personnel involved in soil and plant research by publishing primary research reports and critical reviews of basic and applied soil science, especially as it relates to soil and plant studies and general environmental soil science. Each month, Soil Science presents authoritative research articles from an impressive array of discipline: soil chemistry and biochemistry, physics, fertility and nutrition, soil genesis and morphology, soil microbiology and mineralogy. Of immediate relevance to soil scientists-both industrial and academic-this unique publication also has long-range value for agronomists and environmental scientists.
期刊最新文献
Evaluation of the Relationship Between Dopamine Receptor D2 Gene TaqIA1 Polymorphism and Alcohol Dependence Risk. A weaponized phage suppresses competitors in historical and modern metapopulations of pathogenic bacteria. Self-Reported Olfactory Outcomes in Transplanum and Transtuberculum Approaches. Research and management challenges following soil and landscape decontamination at the onset of the reopening of the Difficult-to-Return Zone, Fukushima (Japan) Earthworm-invaded boreal forest soils harbour distinct microbial communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1