Mild hypoxia exposure impacts peripheral serotonin uptake and degradation in Gulf toadfish, Opsanus beta.

John Sebastiani, Allyson Sabatelli, M. McDonald
{"title":"Mild hypoxia exposure impacts peripheral serotonin uptake and degradation in Gulf toadfish, Opsanus beta.","authors":"John Sebastiani, Allyson Sabatelli, M. McDonald","doi":"10.1242/jeb.244064","DOIUrl":null,"url":null,"abstract":"Plasma 5-HT homeostasis is maintained through the combined processes of uptake (via the 5-HT transporter SERT, and others), degradation (via monoamine oxidase, MAO), and excretion. Previous studies have shown that inhibiting SERT, which would inhibit 5-HT uptake and degradation, attenuates parts of the cardiovascular hypoxia reflex in Gulf toadfish (Opsanus beta), suggesting that these 5-HT clearance processes may be important during hypoxia exposure. Therefore, the goal of this experiment was to determine the effects of mild hypoxia on 5-HT uptake and degradation in the peripheral tissues of toadfish. We hypothesized that 5-HT uptake and degradation would be upregulated during hypoxia resulting in lower plasma 5-HT, with uptake occurring in the gill, heart, liver, and kidney. Fish were exposed to normoxia (97.6% O2 saturation, 155.6 torr), or 2-min, 40-min or 24 h mild hypoxia (50% O2 saturation, ∼80 torr), injected with radiolabeled [3H]5-HT and blood, urine, bile and tissues taken. Plasma 5-HT levels were reduced by 40% after 40 min of hypoxia exposure and persisted through 24 h. 5-HT uptake by the gill was upregulated following 2 min of hypoxia exposure, and degradation in the gill was upregulated at 40 min and 24 h. Interestingly, there was no change in 5-HT uptake by the heart and degradation in the heart decreased by 58% within 2 min of hypoxia exposure and by 85% at 24 h. These results suggest that 5-HT clearance is upregulated during hypoxia and is likely driven, in part, by mechanisms within the gill and not the heart.","PeriodicalId":22458,"journal":{"name":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE EGYPTIAN JOURNAL OF EXPERIMENTAL BIOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1242/jeb.244064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Plasma 5-HT homeostasis is maintained through the combined processes of uptake (via the 5-HT transporter SERT, and others), degradation (via monoamine oxidase, MAO), and excretion. Previous studies have shown that inhibiting SERT, which would inhibit 5-HT uptake and degradation, attenuates parts of the cardiovascular hypoxia reflex in Gulf toadfish (Opsanus beta), suggesting that these 5-HT clearance processes may be important during hypoxia exposure. Therefore, the goal of this experiment was to determine the effects of mild hypoxia on 5-HT uptake and degradation in the peripheral tissues of toadfish. We hypothesized that 5-HT uptake and degradation would be upregulated during hypoxia resulting in lower plasma 5-HT, with uptake occurring in the gill, heart, liver, and kidney. Fish were exposed to normoxia (97.6% O2 saturation, 155.6 torr), or 2-min, 40-min or 24 h mild hypoxia (50% O2 saturation, ∼80 torr), injected with radiolabeled [3H]5-HT and blood, urine, bile and tissues taken. Plasma 5-HT levels were reduced by 40% after 40 min of hypoxia exposure and persisted through 24 h. 5-HT uptake by the gill was upregulated following 2 min of hypoxia exposure, and degradation in the gill was upregulated at 40 min and 24 h. Interestingly, there was no change in 5-HT uptake by the heart and degradation in the heart decreased by 58% within 2 min of hypoxia exposure and by 85% at 24 h. These results suggest that 5-HT clearance is upregulated during hypoxia and is likely driven, in part, by mechanisms within the gill and not the heart.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轻度缺氧暴露影响外周血清素摄取和降解海湾蟾蜍鱼,Opsanus β。
先前的研究表明,抑制SERT会抑制5-羟色胺的摄取和降解,从而减弱海湾蟾鱼(Opsanus beta)部分心血管缺氧反射,这表明这些5-羟色胺清除过程可能在缺氧暴露中很重要。因此,本实验的目的是确定轻度缺氧对蟾鱼外周组织5-HT摄取和降解的影响。我们假设缺氧时5-羟色胺的摄取和降解会上调,导致血浆5-羟色胺含量降低,摄取发生在鳃、心脏、肝脏和肾脏。将鱼暴露于正常缺氧(97.6% O2饱和度,155.6 torr)或2分钟、40分钟或24小时轻度缺氧(50% O2饱和度,~ 80 torr)中,注射放射性标记的[3H]5-HT,并采集血液、尿液、胆汁和组织。血浆5 - 40分钟后水平降低40%低氧暴露,通过24小时持续。5 -吉尔是吸收的调节缺氧暴露2分钟后,吉尔和退化是调节在40分钟和24 h。有趣的是,没有改变5 -心脏和降解吸收的心脏缺氧暴露的2分钟内下降了58%和85%在24 h。这些结果表明,5 -间隙调节在缺氧和可能的驱动,在某种程度上,是通过鳃内的机制而不是心脏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correction: Altitude alters how frogs keep their cool. Putting a new spin on insect jumping performance using 3D modeling and computer simulations of spotted lanternfly nymphs Strong positive allometry of bite force in leaf-cutter ants increases the range of cuttable plant tissues Reconstructing the pressure field around swimming fish using a physics-informed neural network Linking muscle mechanics to the metabolic cost of human hopping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1