Experimental Study of Effect of Temperature Variations on the Impedance Signature of PZT Sensors for Fatigue Crack Detection

IF 0.9 Q4 ACOUSTICS Sound and Vibration Pub Date : 2021-01-01 DOI:10.32604/SV.2021.013754
Saqlain Abbas, Fucai Li, Zulkarnain Abbas, Taufeeq Ur Rehman Abbasi, Xiaotong Tu, R. Pasha
{"title":"Experimental Study of Effect of Temperature Variations on the Impedance Signature of PZT Sensors for Fatigue Crack Detection","authors":"Saqlain Abbas, Fucai Li, Zulkarnain Abbas, Taufeeq Ur Rehman Abbasi, Xiaotong Tu, R. Pasha","doi":"10.32604/SV.2021.013754","DOIUrl":null,"url":null,"abstract":"Structural health monitoring (SHM) is recognized as an ef fi cient tool to interpret the reliability of a wide variety of infrastructures. To identify the structural abnormality by utilizing the electromechanical coupling property of piezoelectric transducers, the electromechanical impedance (EMI) approach is preferred. However, in real-time SHM applications, the monitored structure is exposed to several varying environmental and operating conditions (EOCs). The previous study has recognized the temperature variations as one of the serious EOCs that affect the optimal performance of the damage inspection process. In this framework, an experimental setup is developed in current research to identify the presence of fatigue crack in stainless steel (304) beam using EMI approach and estimate the effect of temperature variations on the electrical impedance of the piezoelectric sensors. A regular series of experiments are executed in a controlled temperature environment (25°C – 160°C) using 202 V1 Constant Temperature Drying Oven Chamber (Q/TBXR20-2005). It has been observed that the dielectric constant ð \" 33 T Þ which is recognized as the temperature-dependent constant of PZT sensor has suf fi ciently in fl uenced the electrical impedance signature. Moreover, the effective frequency shift (EFS) approach is optimized in term of signi fi cant temperature compensation for the current impedance signature of PZT sensor relative to the reference signature at the extended frequency bandwidth of the developed measurement system with better outcomes as compared to the previous literature work. Hence, the current study also deals ef fi ciently with the critical issue of the width of the frequency band for temperature compensation based on the frequency shift in SHM. The results of the experimental study demonstrate that the proposed methodology is quali fi ed for the damage inspection in real-time monitoring applications under the temperature variations. It is capable to exclude one of the major reasons of false fault diag-nosis by compensating the consequence of elevated temperature at extended frequency bandwidth in SHM.","PeriodicalId":49496,"journal":{"name":"Sound and Vibration","volume":"9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sound and Vibration","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.32604/SV.2021.013754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 4

Abstract

Structural health monitoring (SHM) is recognized as an ef fi cient tool to interpret the reliability of a wide variety of infrastructures. To identify the structural abnormality by utilizing the electromechanical coupling property of piezoelectric transducers, the electromechanical impedance (EMI) approach is preferred. However, in real-time SHM applications, the monitored structure is exposed to several varying environmental and operating conditions (EOCs). The previous study has recognized the temperature variations as one of the serious EOCs that affect the optimal performance of the damage inspection process. In this framework, an experimental setup is developed in current research to identify the presence of fatigue crack in stainless steel (304) beam using EMI approach and estimate the effect of temperature variations on the electrical impedance of the piezoelectric sensors. A regular series of experiments are executed in a controlled temperature environment (25°C – 160°C) using 202 V1 Constant Temperature Drying Oven Chamber (Q/TBXR20-2005). It has been observed that the dielectric constant ð " 33 T Þ which is recognized as the temperature-dependent constant of PZT sensor has suf fi ciently in fl uenced the electrical impedance signature. Moreover, the effective frequency shift (EFS) approach is optimized in term of signi fi cant temperature compensation for the current impedance signature of PZT sensor relative to the reference signature at the extended frequency bandwidth of the developed measurement system with better outcomes as compared to the previous literature work. Hence, the current study also deals ef fi ciently with the critical issue of the width of the frequency band for temperature compensation based on the frequency shift in SHM. The results of the experimental study demonstrate that the proposed methodology is quali fi ed for the damage inspection in real-time monitoring applications under the temperature variations. It is capable to exclude one of the major reasons of false fault diag-nosis by compensating the consequence of elevated temperature at extended frequency bandwidth in SHM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
温度变化对疲劳裂纹检测PZT传感器阻抗特征影响的实验研究
结构健康监测(SHM)被认为是解释各种基础设施可靠性的有效工具。为了利用压电换能器的机电耦合特性来识别结构异常,首选采用机电阻抗(EMI)方法。然而,在实时SHM应用中,被监测的结构暴露于几种不同的环境和操作条件(eoc)中。在以往的研究中,温度变化是影响损伤检测过程最佳性能的重要影响因素之一。在此框架下,在目前的研究中建立了一个实验装置,利用电磁干扰方法识别不锈钢(304)梁中疲劳裂纹的存在,并估计温度变化对压电传感器电阻抗的影响。使用202 V1恒温干燥箱(Q/TBXR20-2005)在受控温度环境(25°C - 160°C)中进行常规系列实验。研究发现介电常数33 T Þ作为PZT传感器的温度相关常数,充分影响了PZT传感器的电阻抗特征。此外,对有效频移(EFS)方法进行了优化,对PZT传感器的电流阻抗特征在扩展的测量系统带宽下相对于参考特征进行了显著的温度补偿,与以往的文献工作相比效果更好。因此,本研究也有效地解决了SHM中基于频移的温度补偿的关键频段宽度问题。实验结果表明,该方法适用于温度变化下的实时监测损伤检测。该方法通过补偿SHM扩展带宽下温度升高的后果,能够排除误诊断的主要原因之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sound and Vibration
Sound and Vibration 物理-工程:机械
CiteScore
1.50
自引率
33.30%
发文量
33
审稿时长
>12 weeks
期刊介绍: Sound & Vibration is a journal intended for individuals with broad-based interests in noise and vibration, dynamic measurements, structural analysis, computer-aided engineering, machinery reliability, and dynamic testing. The journal strives to publish referred papers reflecting the interests of research and practical engineering on any aspects of sound and vibration. Of particular interest are papers that report analytical, numerical and experimental methods of more relevance to practical applications. Papers are sought that contribute to the following general topics: -broad-based interests in noise and vibration- dynamic measurements- structural analysis- computer-aided engineering- machinery reliability- dynamic testing
期刊最新文献
Multi-Objective Prediction and Optimization of Vehicle Acoustic Package Based on ResNet Neural Network Research on Human-Vehicle-Road Friendliness Based on Improved SH-GH-ADD Control Introduction to the Special Issue on Perspectives on Soundscape and Challenges of Noise Pollution: A Multidisciplinary Approach to Sustainable Environmental Solutions Damped Mathieu Equation with a Modulation Property of the Homotopy Perturbation Method A Complete Analysis of Clarity (C50) Using I-SIMPA to Maintain Ideal Conditions in an Acoustic Chamber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1