Visual Perception Deep Drive Model for Self-Driving Car

Waleed Razzaq, Usman Arif, Zia Mohi U Din
{"title":"Visual Perception Deep Drive Model for Self-Driving Car","authors":"Waleed Razzaq, Usman Arif, Zia Mohi U Din","doi":"10.57041/pjosr.v1i1.5","DOIUrl":null,"url":null,"abstract":"Self driving cars are the need of future technology, there are many companies that are trying to perfect this particular project but there are still some deficiencies there. Most of the companies are using Expensive sensors like RADAR and LiDAR to get the idea of environment, which are very hard to use and need a lot of processing power. Our project focuses on using only visual aid to drive a car, particularly following the lane of the road. We trained a model using Convolutional Neural Network (CNN), in a simulated environment and tested the model in the same environment.","PeriodicalId":19924,"journal":{"name":"Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Scientific & Industrial Research Series A: Physical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57041/pjosr.v1i1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Self driving cars are the need of future technology, there are many companies that are trying to perfect this particular project but there are still some deficiencies there. Most of the companies are using Expensive sensors like RADAR and LiDAR to get the idea of environment, which are very hard to use and need a lot of processing power. Our project focuses on using only visual aid to drive a car, particularly following the lane of the road. We trained a model using Convolutional Neural Network (CNN), in a simulated environment and tested the model in the same environment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动驾驶汽车视觉感知深度驱动模型
自动驾驶汽车是未来技术的需要,有很多公司正在努力完善这个特定的项目,但仍然存在一些不足。大多数公司都在使用昂贵的传感器,如雷达和激光雷达来了解环境,这些传感器很难使用,需要大量的处理能力。我们的项目专注于仅使用视觉辅助来驾驶汽车,特别是在道路车道上行驶。我们使用卷积神经网络(CNN)在模拟环境中训练模型,并在相同的环境中对模型进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Durability Studies on High Strength Concrete Health Monitoring and Breathing Support System Water Quality Modeling Using Soil and Water Assessment Tool: A Case Study of Rawal Watershed Design and Analysis of Wave Energy Converter Technologies Analysis of Vulnerabilities in System by Penetration Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1