Distribution-free junta testing

Zhengyang Liu, Xi Chen, R. Servedio, Ying Sheng, Jinyu Xie
{"title":"Distribution-free junta testing","authors":"Zhengyang Liu, Xi Chen, R. Servedio, Ying Sheng, Jinyu Xie","doi":"10.1145/3188745.3188842","DOIUrl":null,"url":null,"abstract":"We study the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0,1}n. Our first main result is that distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that uses Õ(k2)/є queries (independent of n). Complementing this, our second main result is a lower bound showing that any non-adaptive distribution-free k-junta testing algorithm must make Ω(2k/3) queries even to test to accuracy є=1/3. These bounds establish that while the optimal query complexity of non-adaptive k-junta testing is 2Θ(k), for adaptive testing it is poly(k), and thus show that adaptivity provides an exponential improvement in the distribution-free query complexity of testing juntas.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We study the problem of testing whether an unknown n-variable Boolean function is a k-junta in the distribution-free property testing model, where the distance between functions is measured with respect to an arbitrary and unknown probability distribution over {0,1}n. Our first main result is that distribution-free k-junta testing can be performed, with one-sided error, by an adaptive algorithm that uses Õ(k2)/є queries (independent of n). Complementing this, our second main result is a lower bound showing that any non-adaptive distribution-free k-junta testing algorithm must make Ω(2k/3) queries even to test to accuracy є=1/3. These bounds establish that while the optimal query complexity of non-adaptive k-junta testing is 2Θ(k), for adaptive testing it is poly(k), and thus show that adaptivity provides an exponential improvement in the distribution-free query complexity of testing juntas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免费分发军政府测试
我们研究了在无分布性质检验模型中检验未知n变量布尔函数是否为k-军政府的问题,其中函数之间的距离是相对于{0,1}n上的任意未知概率分布来测量的。我们的第一个主要结果是,可以通过使用Õ(k2)/ n查询(独立于n)的自适应算法执行无分布k-军政府测试,具有单侧误差。与此相补充的是,我们的第二个主要结果是一个下界,表明任何非自适应无分布k-军政府测试算法必须进行Ω(2k/3)查询,即使测试精度为n =1/3。这些边界表明,非自适应k-军政府测试的最优查询复杂度为2Θ(k),而自适应测试的最优查询复杂度为poly(k),从而表明自适应性在测试军政府的无分布查询复杂度方面提供了指数级的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-dependent hashing via nonlinear spectral gaps Interactive compression to external information The query complexity of graph isomorphism: bypassing distribution testing lower bounds Collusion resistant traitor tracing from learning with errors Explicit binary tree codes with polylogarithmic size alphabet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1