{"title":"Hybrid Approach for Privacy Enhancement in Data Mining Using Arbitrariness and Perturbation","authors":"B. Murugeshwari, S. Rajalakshmi, K. Sudharson","doi":"10.32604/csse.2023.029074","DOIUrl":null,"url":null,"abstract":"Imagine numerous clients, each with personal data; individual inputs are severely corrupt, and a server only concerns the collective, statistically essential facets of this data. In several data mining methods, privacy has become highly critical. As a result, various privacy-preserving data analysis technologies have emerged. Hence, we use the randomization process to reconstruct composite data attributes accurately. Also, we use privacy measures to estimate how much deception is required to guarantee privacy. There are several viable privacy protections; however, determining which one is the best is still a work in progress. This paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data results. Furthermore, this paper investigates the use of arbitrary nature with perturbations in privacy preservation. According to the research, arbitrary objects (most notably random matrices) have \"predicted\" frequency patterns. It shows how to recover crucial information from a sample damaged by a random number using an arbitrary lattice spectral selection strategy. This filtration system's conceptual framework posits, and extensive practical findings indicate that sparse data distortions preserve relatively modest privacy protection in various situations. As a result, the research framework is efficient and effective in maintaining data privacy and security.","PeriodicalId":50634,"journal":{"name":"Computer Systems Science and Engineering","volume":"5 1","pages":"2293-2307"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Systems Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/csse.2023.029074","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4
Abstract
Imagine numerous clients, each with personal data; individual inputs are severely corrupt, and a server only concerns the collective, statistically essential facets of this data. In several data mining methods, privacy has become highly critical. As a result, various privacy-preserving data analysis technologies have emerged. Hence, we use the randomization process to reconstruct composite data attributes accurately. Also, we use privacy measures to estimate how much deception is required to guarantee privacy. There are several viable privacy protections; however, determining which one is the best is still a work in progress. This paper discusses the difficulty of measuring privacy while also offering numerous random sampling procedures and statistical and categorized data results. Furthermore, this paper investigates the use of arbitrary nature with perturbations in privacy preservation. According to the research, arbitrary objects (most notably random matrices) have "predicted" frequency patterns. It shows how to recover crucial information from a sample damaged by a random number using an arbitrary lattice spectral selection strategy. This filtration system's conceptual framework posits, and extensive practical findings indicate that sparse data distortions preserve relatively modest privacy protection in various situations. As a result, the research framework is efficient and effective in maintaining data privacy and security.
期刊介绍:
The journal is devoted to the publication of high quality papers on theoretical developments in computer systems science, and their applications in computer systems engineering. Original research papers, state-of-the-art reviews and technical notes are invited for publication.
All papers will be refereed by acknowledged experts in the field, and may be (i) accepted without change, (ii) require amendment and subsequent re-refereeing, or (iii) be rejected on the grounds of either relevance or content.
The submission of a paper implies that, if accepted for publication, it will not be published elsewhere in the same form, in any language, without the prior consent of the Publisher.