{"title":"A Hardware-assisted Translation Cache for Dynamic Binary Translation in Embedded Systems","authors":"F. Salgado, T. Gomes, A. Tavares, J. Cabral","doi":"10.1109/ETFA.2018.8502558","DOIUrl":null,"url":null,"abstract":"Approaches to Dynamic Binary Translation (DBT) on resource-constrained embedded systems are not straight forward, leading to several improvements and acceleration suggestions that rely on dedicated hardware. Software to hardware of-floading is a common acceleration procedure used when software-only approaches do not meet the performance requirements, making such approach suitable to be successfully applied to DBT. This article approaches hardware offloading to address some limitations of an in-house DBT engine, the DBTOR, regarding its Translation Cache (TCache) management mechanism. The suggested approaches are non-intrusive to the target architecture, which cope with the commercial-off-the-shelf (COTS)-driven deployment of DBT for the resource-constrained embedded devices. This work proposes a TCache management hardware module that overpasses the linked list and hash table software-only approaches, resulting in a performance improvement of 25% and 26%, respectively.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"50 1","pages":"307-312"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Approaches to Dynamic Binary Translation (DBT) on resource-constrained embedded systems are not straight forward, leading to several improvements and acceleration suggestions that rely on dedicated hardware. Software to hardware of-floading is a common acceleration procedure used when software-only approaches do not meet the performance requirements, making such approach suitable to be successfully applied to DBT. This article approaches hardware offloading to address some limitations of an in-house DBT engine, the DBTOR, regarding its Translation Cache (TCache) management mechanism. The suggested approaches are non-intrusive to the target architecture, which cope with the commercial-off-the-shelf (COTS)-driven deployment of DBT for the resource-constrained embedded devices. This work proposes a TCache management hardware module that overpasses the linked list and hash table software-only approaches, resulting in a performance improvement of 25% and 26%, respectively.