Phototriggerable, Fully Transient Electronics: Component and Device Fabrication

Gerald Gourdin, O. Phillips, J. Schwartz, A. Engler, P. Kohl
{"title":"Phototriggerable, Fully Transient Electronics: Component and Device Fabrication","authors":"Gerald Gourdin, O. Phillips, J. Schwartz, A. Engler, P. Kohl","doi":"10.1109/ECTC.2017.129","DOIUrl":null,"url":null,"abstract":"Electronic devices that can physically or functionally disintegrate on-demand have applications as remote sensors, bioelectronics for diagnostics, and other multifunctional devices with temporal functional profiles. This emerging field requires materials, devices, and systems which effectively disappear, (i.e. vaporize), with little or no traceable remains. Prior efforts have achieved transience with devices either submerged in an aqueous solution, which degrades the materials over time, or by triggering an inundation of the materials with a liquid solution. Neither scenario allow for both control of the life cycle of the system and assurance that transience would be complete. Metastable polymers, which can be induced to depolymerize rapidly through a specific trigger, offers a more versatile approach to selecting materials and allows for more control over the device's lifetime. A triggerable, transient material which vaporizes on command was prepared by the addition of a photo-acid generator (PAG) to an acid-sensitive metastable polymer, where the rate of degradation can be controlled by the concentration of the PAG and the intensity of light irradiance. In this work, a transient electronic component, a multilayer interconnect board was fabricated using a PAG-loaded, cyclic poly(phthalaldehyde) substrate. The p(PHA) material used to fabricate the dielectric acts as the support substrate for the metal routing layers, where the conductive 'wiring' was composed of a silver nanoparticle-filled p(PHA) formulation. Elastic modulus, resistivity, connectivity, and conductor sheet resistance of the individual components were evaluated and transience was demonstrated.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"20 1","pages":"190-196"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Electronic devices that can physically or functionally disintegrate on-demand have applications as remote sensors, bioelectronics for diagnostics, and other multifunctional devices with temporal functional profiles. This emerging field requires materials, devices, and systems which effectively disappear, (i.e. vaporize), with little or no traceable remains. Prior efforts have achieved transience with devices either submerged in an aqueous solution, which degrades the materials over time, or by triggering an inundation of the materials with a liquid solution. Neither scenario allow for both control of the life cycle of the system and assurance that transience would be complete. Metastable polymers, which can be induced to depolymerize rapidly through a specific trigger, offers a more versatile approach to selecting materials and allows for more control over the device's lifetime. A triggerable, transient material which vaporizes on command was prepared by the addition of a photo-acid generator (PAG) to an acid-sensitive metastable polymer, where the rate of degradation can be controlled by the concentration of the PAG and the intensity of light irradiance. In this work, a transient electronic component, a multilayer interconnect board was fabricated using a PAG-loaded, cyclic poly(phthalaldehyde) substrate. The p(PHA) material used to fabricate the dielectric acts as the support substrate for the metal routing layers, where the conductive 'wiring' was composed of a silver nanoparticle-filled p(PHA) formulation. Elastic modulus, resistivity, connectivity, and conductor sheet resistance of the individual components were evaluated and transience was demonstrated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可光触发的全瞬态电子学:元件和器件制造
能够在物理上或功能上按需分解的电子设备有远程传感器、用于诊断的生物电子学和其他具有时间功能概况的多功能设备等应用。这个新兴领域需要材料、设备和系统有效地消失(即蒸发),很少或没有可追溯的残留物。之前的研究已经实现了器件在水溶液中浸没的短暂性,随着时间的推移材料会降解,或者通过触发液体溶液对材料的淹没。这两种方案都不允许控制系统的生命周期,也不允许保证暂态是完整的。亚稳态聚合物可以通过特定的触发器诱导快速解聚,提供了一种更通用的选择材料的方法,并允许对设备的使用寿命进行更多的控制。通过在酸敏感亚稳聚合物中加入光酸发生器(PAG)制备了一种可触发的瞬时蒸发材料,其降解速率可由PAG的浓度和光辐照强度控制。在这项工作中,瞬态电子元件,多层互连板是用pag负载的,环状聚(邻苯二醛)衬底制造的。用于制造电介质的p(PHA)材料充当金属布线层的支撑基板,其中导电“布线”由银纳米颗粒填充的p(PHA)配方组成。评估了各个元件的弹性模量、电阻率、连通性和导体片电阻,并证明了瞬态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peridynamic Solution of Wetness Equation with Time Dependent Saturated Concentration in ANSYS Framework Axially Tapered Circular Core Polymer Optical Waveguides Enabling Highly Efficient Light Coupling Low Loss Channel-Shuffling Polymer Waveguides: Design and Fabrication Development of Packaging Technology for High Temperature Resistant SiC Module of Automobile Application 3D Packaging of Embedded Opto-Electronic Die and CMOS IC Based on Wet Etched Silicon Interposer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1