Daniel C Licea-Saucedo, D. Rodrigue, E. Cisneros-López, R. González‐Núñez
{"title":"Blown film stability for low, medium, and high molecular weight polylactic acid and their tensile properties","authors":"Daniel C Licea-Saucedo, D. Rodrigue, E. Cisneros-López, R. González‐Núñez","doi":"10.1177/87560879231153702","DOIUrl":null,"url":null,"abstract":"Three poly (lactic acid) (PLA) resins with molecular weight (Mw) equal to 55 (3251D), 125 (L105) and 163 (LX175) kg/mol were characterized in terms of capillary viscosity, mechanical and thermal properties and used to produce blown films. The effect of temperature, extrusion rate, stretching (TUR) and blow-up (BUR) ratios were evaluated to determine the optimum processing conditions for blown films based on the bubble stability and to determine their final tensile properties. As expected, the processing temperature was the most critical parameter on the film stability. The lower Mw PLA showed limited processing stability. Stable conditions were found at higher temperature (200°C) for higher Mw. These results correlate with the PLA viscosity (melt strength). Finally, the PLA film tensile strength (TS) strongly depended on their processability. For example, 3251D and L105 required high stretching (TUR = 3.4 and 7) for maximum TS (30 and 64 MPa) with a low blow-up ratio (BUR = 1.02–1.15). However, a moderate increase in BUR (10% at TUR = 3) led to a substantial drop in TS (from 29 MPa to 21 MPa for PLA 3251D and 44 MPa–34 MPa for L105). Overall, LX175 was the most interesting resin with 49 MPa TS which was independent of the BUR and TUR used in this investigation.","PeriodicalId":16823,"journal":{"name":"Journal of Plastic Film & Sheeting","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plastic Film & Sheeting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/87560879231153702","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 2
Abstract
Three poly (lactic acid) (PLA) resins with molecular weight (Mw) equal to 55 (3251D), 125 (L105) and 163 (LX175) kg/mol were characterized in terms of capillary viscosity, mechanical and thermal properties and used to produce blown films. The effect of temperature, extrusion rate, stretching (TUR) and blow-up (BUR) ratios were evaluated to determine the optimum processing conditions for blown films based on the bubble stability and to determine their final tensile properties. As expected, the processing temperature was the most critical parameter on the film stability. The lower Mw PLA showed limited processing stability. Stable conditions were found at higher temperature (200°C) for higher Mw. These results correlate with the PLA viscosity (melt strength). Finally, the PLA film tensile strength (TS) strongly depended on their processability. For example, 3251D and L105 required high stretching (TUR = 3.4 and 7) for maximum TS (30 and 64 MPa) with a low blow-up ratio (BUR = 1.02–1.15). However, a moderate increase in BUR (10% at TUR = 3) led to a substantial drop in TS (from 29 MPa to 21 MPa for PLA 3251D and 44 MPa–34 MPa for L105). Overall, LX175 was the most interesting resin with 49 MPa TS which was independent of the BUR and TUR used in this investigation.
期刊介绍:
The Journal of Plastic Film and Sheeting improves communication concerning plastic film and sheeting with major emphasis on the propogation of knowledge which will serve to advance the science and technology of these products and thus better serve industry and the ultimate consumer. The journal reports on the wide variety of advances that are rapidly taking place in the technology of plastic film and sheeting. This journal is a member of the Committee on Publication Ethics (COPE).