{"title":"Computational Cross Ratio for Computer Vision","authors":"Kanatani K.","doi":"10.1006/ciun.1994.1063","DOIUrl":null,"url":null,"abstract":"<div><p>A new \"computational\" formulation of cross ratio is presented with a view to applications to computer vision problems by extending the framework of \"computational projective geometry\" of Kanatani (<em>Image Understand.</em> 54, 1991, 333-348). As typical examples, we construct procedures for computing the 3-D orientation of a planar shape from its 2-D projection image and the focus of expansion from an image trajectory of a single point by taking advantage of the perspective invariance of cross ratio and \"projective coordinates,\" and the resulting 3-D interpretation of \"harmonic range.\"</p></div>","PeriodicalId":100350,"journal":{"name":"CVGIP: Image Understanding","volume":"60 3","pages":"Pages 371-381"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/ciun.1994.1063","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVGIP: Image Understanding","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1049966084710631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
A new "computational" formulation of cross ratio is presented with a view to applications to computer vision problems by extending the framework of "computational projective geometry" of Kanatani (Image Understand. 54, 1991, 333-348). As typical examples, we construct procedures for computing the 3-D orientation of a planar shape from its 2-D projection image and the focus of expansion from an image trajectory of a single point by taking advantage of the perspective invariance of cross ratio and "projective coordinates," and the resulting 3-D interpretation of "harmonic range."