Static and flow behaviors of supercritical CO2 foam stabilized with betaine surfactant for mobility control application

IF 1.8 4区 工程技术 Q4 ENERGY & FUELS Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles Pub Date : 2021-01-01 DOI:10.2516/ogst/2021040
Weitao Li, Kai Wang, Wenkuan Zheng
{"title":"Static and flow behaviors of supercritical CO2 foam stabilized with betaine surfactant for mobility control application","authors":"Weitao Li, Kai Wang, Wenkuan Zheng","doi":"10.2516/ogst/2021040","DOIUrl":null,"url":null,"abstract":"Aiming at improving the stability of Supercritical CO2 (SC-CO2) foam in high temperature and salinity reservoirs, a kind of betaine surfactant, Hexadecyl Hydroxypropyl Sulfo Betaine (HHSB), was screened to stabilize SC-CO2 foam. The properties of SC-CO2 foam were improved at elevated temperature and pressure. The effects of surfactant concentration, temperature, pressure and salinity on film drainage rate were measured to explore the stability of SC-CO2 foam. The results showed that an increase of surfactant concentration, pressure and salinity can decrease film drainage rate and enhance the foam stability, which was attributed to the increase of surfactant adsorption at the gas–liquid interface. The performance of SC-CO2 foam formed by HHSB was improved and the tolerant temperature was up to 100 °C. 1-D core flooding experiments indicated that compared with Coinjection of Surfactant and Gas (CSG) method the SC-CO2 foam generated through Surfactant-Alternative-Gas (SAG) method had lower foam strength but better in-depth migration capacity. The high temperature and pressure 3-D sand showed that in Water-Alternative-Gas (WAG) case CO2 broke early through the high permeability layers. In SAG case, SC-CO2 foam can improve the macroscopic sweep efficiency by reducing the CO2 mobility.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/ogst/2021040","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at improving the stability of Supercritical CO2 (SC-CO2) foam in high temperature and salinity reservoirs, a kind of betaine surfactant, Hexadecyl Hydroxypropyl Sulfo Betaine (HHSB), was screened to stabilize SC-CO2 foam. The properties of SC-CO2 foam were improved at elevated temperature and pressure. The effects of surfactant concentration, temperature, pressure and salinity on film drainage rate were measured to explore the stability of SC-CO2 foam. The results showed that an increase of surfactant concentration, pressure and salinity can decrease film drainage rate and enhance the foam stability, which was attributed to the increase of surfactant adsorption at the gas–liquid interface. The performance of SC-CO2 foam formed by HHSB was improved and the tolerant temperature was up to 100 °C. 1-D core flooding experiments indicated that compared with Coinjection of Surfactant and Gas (CSG) method the SC-CO2 foam generated through Surfactant-Alternative-Gas (SAG) method had lower foam strength but better in-depth migration capacity. The high temperature and pressure 3-D sand showed that in Water-Alternative-Gas (WAG) case CO2 broke early through the high permeability layers. In SAG case, SC-CO2 foam can improve the macroscopic sweep efficiency by reducing the CO2 mobility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甜菜碱表面活性剂稳定超临界CO2泡沫的静态和流动行为
为了提高超临界CO2 (SC-CO2)泡沫在高温、盐度油藏中的稳定性,筛选了甜菜碱表面活性剂十六烷基羟丙基磺基甜菜碱(HHSB)来稳定SC-CO2泡沫。在高温高压条件下,SC-CO2泡沫材料的性能得到了改善。考察表面活性剂浓度、温度、压力和矿化度对SC-CO2泡沫排膜速率的影响,探讨其稳定性。结果表明,表面活性剂浓度、压力和矿化度的增加可以降低膜的排液速率,增强泡沫的稳定性,这是由于表面活性剂在气液界面处的吸附增加所致。HHSB制备的SC-CO2泡沫材料性能得到改善,耐高温可达100℃。一维岩心驱油实验表明,与表面活性剂和气体共注(CSG)法相比,表面活性剂-替代气体(SAG)法生成的SC-CO2泡沫强度较低,但深度运移能力较强。高温高压三维砂岩试验表明,在水-气交替(WAG)条件下,CO2较早突破高渗透层。在SAG情况下,SC-CO2泡沫通过降低CO2迁移率来提高宏观波及效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
2.7 months
期刊介绍: OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition. OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases. The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month. Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.
期刊最新文献
Preliminary analyses of synthetic carbonate plugs: consolidation, petrophysical and wettability properties Analysis of well testing results for single phase flow in reservoirs with percolation structure Digital twin based reference architecture for petrochemical monitoring and fault diagnosis Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms Ensemble-based method with combined fractional flow model for waterflooding optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1