Hannes Hase, Melissa Berteau-Rainville, Somaiyeh Charoughchi, W. Bodlos, E. Orgiu, I. Salzmann
{"title":"Critical dopant concentrations govern integer and fractional charge-transfer phases in doped P3HT","authors":"Hannes Hase, Melissa Berteau-Rainville, Somaiyeh Charoughchi, W. Bodlos, E. Orgiu, I. Salzmann","doi":"10.1088/2515-7639/aca71e","DOIUrl":null,"url":null,"abstract":"The conjugated polymer poly(3-hexylthiophene) (P3HT) p-doped with the strong acceptor tetrafluorotetracyanoquinodimethane (F4TCNQ) is known to undergo ion-pair (IPA) formation, i.e. integer-charge transfer, and, as only recently reported, can form ground state charge-transfer complexes (CPXs) as a competing process, yielding fractional charge transfer. As these fundamental charge-transfer phenomena differently affect doping efficiency and, thus, organic-semiconductor device performance, possible factors governing their occurrence have been under investigation ever since. Here, we focus on the role of a critical dopant concentration deciding over IPA- or CPX-dominated regimes. Employing a broad, multi-technique approach, we compare the doping of P3HT by F4TCNQ and its weaker derivatives F2TCNQ, FTCNQ, and TCNQ, combining experiments with semi-classical modeling. IPA, CPX, and neutral-dopant ratios (estimated from vibrational absorption spectroscopy) together with electron affinity and ionization energy values (deduced from cyclic voltammetry) allow calculating the width of a Gaussian density of states (DOS) relating to the highest occupied molecular orbital in P3HT. While a broader DOS indicates energetic disorder, we use grazing-incidence x-ray diffraction to assess spatial order. Our findings consider the proposal of nucleation driving IPA formation and we hypothesize a certain host-dopant stoichiometry to be key for the formation of a crystalline CPX phase.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"23 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/aca71e","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2
Abstract
The conjugated polymer poly(3-hexylthiophene) (P3HT) p-doped with the strong acceptor tetrafluorotetracyanoquinodimethane (F4TCNQ) is known to undergo ion-pair (IPA) formation, i.e. integer-charge transfer, and, as only recently reported, can form ground state charge-transfer complexes (CPXs) as a competing process, yielding fractional charge transfer. As these fundamental charge-transfer phenomena differently affect doping efficiency and, thus, organic-semiconductor device performance, possible factors governing their occurrence have been under investigation ever since. Here, we focus on the role of a critical dopant concentration deciding over IPA- or CPX-dominated regimes. Employing a broad, multi-technique approach, we compare the doping of P3HT by F4TCNQ and its weaker derivatives F2TCNQ, FTCNQ, and TCNQ, combining experiments with semi-classical modeling. IPA, CPX, and neutral-dopant ratios (estimated from vibrational absorption spectroscopy) together with electron affinity and ionization energy values (deduced from cyclic voltammetry) allow calculating the width of a Gaussian density of states (DOS) relating to the highest occupied molecular orbital in P3HT. While a broader DOS indicates energetic disorder, we use grazing-incidence x-ray diffraction to assess spatial order. Our findings consider the proposal of nucleation driving IPA formation and we hypothesize a certain host-dopant stoichiometry to be key for the formation of a crystalline CPX phase.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.