Dynamically Energy-Efficient Resource Allocation in 5G CRAN Using Intelligence Algorithm

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC EMITTER-International Journal of Engineering Technology Pub Date : 2022-06-26 DOI:10.24003/emitter.v10i1.661
Prasanth Rao Adiraju, Voore Subba Rao
{"title":"Dynamically Energy-Efficient Resource Allocation in 5G CRAN Using Intelligence Algorithm","authors":"Prasanth Rao Adiraju, Voore Subba Rao","doi":"10.24003/emitter.v10i1.661","DOIUrl":null,"url":null,"abstract":"5G network is the next generation for cellular networks to overcome the challenges and limitations of the 4G network.  Cloud Radio Access Network(C-RAN) is providing solutions for cost-efficient and power-efficient solutions for the 5G network.   The aim of this paper proposed an energy-efficient C-RAN to minimize the cost of the network by dynamically allocating BBU resources to RRHs as per facing traffic, and also minimize the energy consumption of centralized BBU resources that affect dynamically allocate of RRHs.  Particle Swarm Optimization (PSO) algorithm is a Swarm Intelligence algorithm for optimization of mapping between BBU-RRH for resource allocation in C-RAN.  The main objective of the paper is as per resource usage in C-RAN the BBU is put in the active or in-active mode to minimize energy consumption in C-RAN of 5G technology. As per our proposed C-RANapplication, the proposed PSO algorithm 90% minimizes energy consumption and maximizes energy efficiency compared with existing work.","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"143 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24003/emitter.v10i1.661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

5G network is the next generation for cellular networks to overcome the challenges and limitations of the 4G network.  Cloud Radio Access Network(C-RAN) is providing solutions for cost-efficient and power-efficient solutions for the 5G network.   The aim of this paper proposed an energy-efficient C-RAN to minimize the cost of the network by dynamically allocating BBU resources to RRHs as per facing traffic, and also minimize the energy consumption of centralized BBU resources that affect dynamically allocate of RRHs.  Particle Swarm Optimization (PSO) algorithm is a Swarm Intelligence algorithm for optimization of mapping between BBU-RRH for resource allocation in C-RAN.  The main objective of the paper is as per resource usage in C-RAN the BBU is put in the active or in-active mode to minimize energy consumption in C-RAN of 5G technology. As per our proposed C-RANapplication, the proposed PSO algorithm 90% minimizes energy consumption and maximizes energy efficiency compared with existing work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于智能算法的5G CRAN动态节能资源分配
5G网络是克服4G网络的挑战和局限性的下一代蜂窝网络。云无线接入网(C-RAN)正在为5G网络提供经济高效和节能的解决方案。本文提出了一种节能的C-RAN,通过根据面对的流量动态地将BBU资源分配给rrh,使网络成本最小化,同时将集中的BBU资源对rrh动态分配的影响最小化。粒子群优化算法(Particle Swarm Optimization, PSO)是一种用于优化BBU-RRH之间映射以实现C-RAN中资源分配的群体智能算法。本文的主要目的是根据C-RAN中的资源使用情况,将BBU置于主动或非主动模式,以最大限度地减少5G技术的C-RAN中的能耗。根据我们提出的C-RANapplication,与现有的工作相比,所提出的PSO算法最小化了90%的能量消耗并最大化了能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
Hardware Trojan Detection and Mitigation in NoC using Key authentication and Obfuscation Techniques Estimation of Confidence in the Dialogue based on Eye Gaze and Head Movement Information Experimental Study of Hydroformed Al6061T4 Elliptical Tube Samples under Different Internal Pressures Numerical Study of a Wind Turbine Blade Modification Using 30° Angle Winglet on Clark Y Foil 3D Visualization for Lung Surface Images of Covid-19 Patients based on U-Net CNN Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1