Weak Target Detection in MIMO Radar via Beamspace Canonical Correlation

M. S. Ibrahim, N. Sidiropoulos
{"title":"Weak Target Detection in MIMO Radar via Beamspace Canonical Correlation","authors":"M. S. Ibrahim, N. Sidiropoulos","doi":"10.1109/SAM48682.2020.9104284","DOIUrl":null,"url":null,"abstract":"Reliable detection and accurate estimation of weak targets and their Doppler frequencies is a challenging problem in MIMO radar systems. Reflections from such targets are often overpowered by those from stronger nearby targets and clutter. Considering a 3-D data model where the coherent processing interval comprises multiple pulses, a novel weak target detection and estimation approach is proposed in this paper. The proposed method is based on creating partially overlapping spatial beams, and performing canonical correlation analysis (CCA) in the resulting beamspace. It is shown that if a target is present in the overlap sector, then its Doppler profile can be reliably estimated via beamspace CCA, even if hidden under much stronger interference from nearby targets and clutter. Numerical results are included to validate this theoretical claim, demonstrating that the proposed Beamspace Canonical Correlation (BCC) method yields considerable performance improvement over existing approaches.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"62 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Reliable detection and accurate estimation of weak targets and their Doppler frequencies is a challenging problem in MIMO radar systems. Reflections from such targets are often overpowered by those from stronger nearby targets and clutter. Considering a 3-D data model where the coherent processing interval comprises multiple pulses, a novel weak target detection and estimation approach is proposed in this paper. The proposed method is based on creating partially overlapping spatial beams, and performing canonical correlation analysis (CCA) in the resulting beamspace. It is shown that if a target is present in the overlap sector, then its Doppler profile can be reliably estimated via beamspace CCA, even if hidden under much stronger interference from nearby targets and clutter. Numerical results are included to validate this theoretical claim, demonstrating that the proposed Beamspace Canonical Correlation (BCC) method yields considerable performance improvement over existing approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于波束空间典型相关的MIMO雷达弱目标检测
弱目标及其多普勒频率的可靠检测和准确估计是MIMO雷达系统中一个具有挑战性的问题。来自这些目标的反射通常被来自附近更强的目标和杂波的反射所压制。针对相干处理间隔由多个脉冲组成的三维数据模型,提出了一种新的弱目标检测与估计方法。该方法基于创建部分重叠的空间波束,并在产生的波束空间中进行典型相关分析(CCA)。结果表明,如果目标存在于重叠扇区,那么即使隐藏在附近目标和杂波的更强干扰下,也可以通过波束空间CCA可靠地估计其多普勒轮廓。数值结果验证了这一理论主张,表明所提出的波束空间典型相关(BCC)方法比现有方法具有相当大的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-accelerated parallel optimization for sparse regularization Efficient Beamforming Training and Channel Estimation for mmWave MIMO-OFDM Systems Online Robust Reduced-Rank Regression Block Sparsity Based Chirp Transform for Modeling Marine Mammal Whistle Calls Deterministic Coherence-Based Performance Guarantee for Noisy Sparse Subspace Clustering using Greedy Neighbor Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1