{"title":"Nanogenerators on Flexible Substrates","authors":"D. Ban","doi":"10.1109/IFETC.2018.8584025","DOIUrl":null,"url":null,"abstract":"Nanowire based nanogenerators are fabricated on flexible substrates, which convert mechanical energy to electrical energy. The energy harvesting performance of the devices is significantly improved by optimizing the doping concentration of the nanowires and by integrating a nanocrystalline/amorphous Si:H single junction solar cell.","PeriodicalId":6609,"journal":{"name":"2018 International Flexible Electronics Technology Conference (IFETC)","volume":"8 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Flexible Electronics Technology Conference (IFETC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFETC.2018.8584025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanowire based nanogenerators are fabricated on flexible substrates, which convert mechanical energy to electrical energy. The energy harvesting performance of the devices is significantly improved by optimizing the doping concentration of the nanowires and by integrating a nanocrystalline/amorphous Si:H single junction solar cell.