C. Rossbach, J. Currey, M. Silberstein, Baishakhi Ray, E. Witchel
{"title":"PTask: operating system abstractions to manage GPUs as compute devices","authors":"C. Rossbach, J. Currey, M. Silberstein, Baishakhi Ray, E. Witchel","doi":"10.1145/2043556.2043579","DOIUrl":null,"url":null,"abstract":"We propose a new set of OS abstractions to support GPUs and other accelerator devices as first class computing resources. These new abstractions, collectively called the PTask API, support a dataflow programming model. Because a PTask graph consists of OS-managed objects, the kernel has sufficient visibility and control to provide system-wide guarantees like fairness and performance isolation, and can streamline data movement in ways that are impossible under current GPU programming models. Our experience developing the PTask API, along with a gestural interface on Windows 7 and a FUSE-based encrypted file system on Linux show that the PTask API can provide important system-wide guarantees where there were previously none, and can enable significant performance improvements, for example gaining a 5× improvement in maximum throughput for the gestural interface.","PeriodicalId":20672,"journal":{"name":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"266","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2043556.2043579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 266
Abstract
We propose a new set of OS abstractions to support GPUs and other accelerator devices as first class computing resources. These new abstractions, collectively called the PTask API, support a dataflow programming model. Because a PTask graph consists of OS-managed objects, the kernel has sufficient visibility and control to provide system-wide guarantees like fairness and performance isolation, and can streamline data movement in ways that are impossible under current GPU programming models. Our experience developing the PTask API, along with a gestural interface on Windows 7 and a FUSE-based encrypted file system on Linux show that the PTask API can provide important system-wide guarantees where there were previously none, and can enable significant performance improvements, for example gaining a 5× improvement in maximum throughput for the gestural interface.