{"title":"LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation","authors":"Taha Emara, H. A. E. Munim, Hazem M. Abbas","doi":"10.1109/DICTA47822.2019.8945975","DOIUrl":null,"url":null,"abstract":"Semantic image segmentation plays a pivotal role in many vision applications including autonomous driving and medical image analysis. Most of the former approaches move towards enhancing the performance in terms of accuracy with a little awareness of computational efficiency. In this paper, we introduce LiteSeg, a lightweight architecture for semantic image segmentation. In this work, we explore a new deeper version of Atrous Spatial Pyramid Pooling module (ASPP) and apply short and long residual connections, and depthwise separable convolution, resulting in a faster and efficient model. LiteSeg architecture is introduced and tested with multiple backbone networks as Darknet19, MobileNet, and ShuffleNet to provide multiple trade-offs between accuracy and computational cost. The proposed model LiteSeg, with MobileNetV2 as a backbone network, achieves an accuracy of 67.81% mean intersection over union at 161 frames per second with 640 × 360 resolution on the Cityscapes dataset.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"94 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
Semantic image segmentation plays a pivotal role in many vision applications including autonomous driving and medical image analysis. Most of the former approaches move towards enhancing the performance in terms of accuracy with a little awareness of computational efficiency. In this paper, we introduce LiteSeg, a lightweight architecture for semantic image segmentation. In this work, we explore a new deeper version of Atrous Spatial Pyramid Pooling module (ASPP) and apply short and long residual connections, and depthwise separable convolution, resulting in a faster and efficient model. LiteSeg architecture is introduced and tested with multiple backbone networks as Darknet19, MobileNet, and ShuffleNet to provide multiple trade-offs between accuracy and computational cost. The proposed model LiteSeg, with MobileNetV2 as a backbone network, achieves an accuracy of 67.81% mean intersection over union at 161 frames per second with 640 × 360 resolution on the Cityscapes dataset.