Detection of Pill Intake Associated Gestures using Smart Wearables and Machine Learning

Dacian Avramoni, Roxana Virlan, L. Prodan, A. Iovanovici
{"title":"Detection of Pill Intake Associated Gestures using Smart Wearables and Machine Learning","authors":"Dacian Avramoni, Roxana Virlan, L. Prodan, A. Iovanovici","doi":"10.1109/CINTI-MACRo57952.2022.10029615","DOIUrl":null,"url":null,"abstract":"Gesture identification represents one way of monitoring adherence to medical treatment for cognitive-impaired individuals, dementia-related conditions being severely dependent on precise medication. This paper proposes a gesture identification algorithm used to detect the pill ingestion, that runs on an inexpensive smart wearable device. We use techniques pertaining to supervised machine learning and the data set is processed with the Keras framework. Data collected is represented by acceleration values supplied by the wearable and is proceed on the wearable device itself, showing high accuracy results in identifying the pill intake gesture. The trained model is deployed in a resource constrained embedded device and the inferences is carried locally onto the device.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"18 1","pages":"000251-000256"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gesture identification represents one way of monitoring adherence to medical treatment for cognitive-impaired individuals, dementia-related conditions being severely dependent on precise medication. This paper proposes a gesture identification algorithm used to detect the pill ingestion, that runs on an inexpensive smart wearable device. We use techniques pertaining to supervised machine learning and the data set is processed with the Keras framework. Data collected is represented by acceleration values supplied by the wearable and is proceed on the wearable device itself, showing high accuracy results in identifying the pill intake gesture. The trained model is deployed in a resource constrained embedded device and the inferences is carried locally onto the device.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用智能可穿戴设备和机器学习检测药丸摄入相关手势
手势识别代表了一种监测认知受损个体坚持治疗的方法,痴呆症相关疾病严重依赖于精确的药物治疗。本文提出了一种用于检测药丸摄入的手势识别算法,该算法在廉价的智能可穿戴设备上运行。我们使用与监督机器学习相关的技术,并使用Keras框架处理数据集。收集的数据由可穿戴设备提供的加速度值表示,并在可穿戴设备上进行处理,在识别药丸摄入手势方面显示出高精度的结果。训练后的模型部署在资源受限的嵌入式设备中,并在设备上进行局部推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Microstructure Patterns: Influence on Hydrophobic Properties of 3D-Printed Surfaces Optical and Morphological Characterization of Nanoscale Oxides Grown in Low-Energy H+-Implanted c-Silicon Extending Polymer Opal Structural Color Properties into the Near-Infrared Implementation of Numerical Model for Prediction of Temperature Distribution for Metallic-Coated Firefighter Protective Clothing A Microfluidic Paper-Based Lateral Flow Device for Quantitative ELISA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1