An imaging vector magnetograph for the next solar maximum

R. Canfield, D. Mickey
{"title":"An imaging vector magnetograph for the next solar maximum","authors":"R. Canfield, D. Mickey","doi":"10.1029/GM054P0037","DOIUrl":null,"url":null,"abstract":"Measurements of the vector magnetic field in the solar atmosphere with high spatial and temporal resolution over a large field of view are critical to understanding the nature and evolution of currents in active regions. Such measurements, when combined with the thermal and nonthermal X-ray images from the upcoming Solar-A mission, will reveal the large-scale relationship between these currents and sites of heating and particle acceleration in flaring coronal magnetic flux tubes. The conceptual design of an imaging vector magnetograph that combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and a rapid digital tape recorder are described. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (4 x 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectra range (5000 to 8000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically dominated chromosphere, as well as effective co-alignment with Solar-A's X-ray images.","PeriodicalId":9423,"journal":{"name":"Bulletin of the American Astronomical Society","volume":"11 1","pages":"37-46"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Astronomical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/GM054P0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Measurements of the vector magnetic field in the solar atmosphere with high spatial and temporal resolution over a large field of view are critical to understanding the nature and evolution of currents in active regions. Such measurements, when combined with the thermal and nonthermal X-ray images from the upcoming Solar-A mission, will reveal the large-scale relationship between these currents and sites of heating and particle acceleration in flaring coronal magnetic flux tubes. The conceptual design of an imaging vector magnetograph that combines a modest solar telescope with a rotating quarter-wave plate, an acousto-optical tunable prefilter as a blocker for a servo-controlled Fabry-Perot etalon, CCD cameras, and a rapid digital tape recorder are described. Its high spatial resolution (1/2 arcsec pixel size) over a large field of view (4 x 5 arcmin) will be sufficient to significantly measure, for the first time, the magnetic energy dissipated in major solar flares. Its millisecond tunability and wide spectra range (5000 to 8000 A) enable nearly simultaneous vector magnetic field measurements in the gas-pressure-dominated photosphere and magnetically dominated chromosphere, as well as effective co-alignment with Solar-A's X-ray images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
下一个太阳极大期的成像矢量磁图
在大视场上以高空间和时间分辨率测量太阳大气中的矢量磁场,对于了解活跃区电流的性质和演变至关重要。当这些测量与即将到来的太阳- a任务的热x射线和非热x射线图像相结合时,将揭示这些电流与日冕磁通管中加热和粒子加速位置之间的大规模关系。描述了一种成像矢量磁图的概念设计,该磁图结合了一个普通的太阳望远镜和一个旋转的四分之一波片,一个声光可调预滤波器作为伺服控制法布里-珀罗标准龙的阻挡器,CCD相机和一个快速数字磁带录音机。它的高空间分辨率(1/2角秒像素大小)在一个大视场(4 x 5角分)将足以显著测量,第一次,在主要的太阳耀斑耗散的磁能。它的毫秒可调性和宽光谱范围(5000到8000a)使得在气压主导的光球层和磁主导的色球层中几乎同时进行矢量磁场测量,以及与Solar-A的x射线图像有效地共对准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NASA Ames Thermophysics Ground Test Facilities Supporting Future Planetary Atmospheric Entry Solar System Science with Space Telescopes Rapid Response and Robotic Telescopes For Understanding Small Body Transient Science Impact of Satellite Constellations on Optical Astronomy and Recommendations Toward Mitigations Gender and sexual minorities in astronomy and planetary science face increased risks of harassment and assault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1