Thermal-aware Optimizations of ReRAM-based Neuromorphic Computing Systems

Majed Valad Beigi, G. Memik
{"title":"Thermal-aware Optimizations of ReRAM-based Neuromorphic Computing Systems","authors":"Majed Valad Beigi, G. Memik","doi":"10.1145/3195970.3196128","DOIUrl":null,"url":null,"abstract":"ReRAM-based systems are attractive implementation alternatives for neuromorphic computing because of their high speed and low design cost. In this work, we investigate the impact of temperature on the ReRAM-based neuromorphic architectures and show how varying temperatures have a negative impact on the computation accuracy. We first classify ReRAM crossbar cells based on their temperature and identify effective neural network weights that have large impacts on network outputs. Then, we propose a novel temperature-aware training and mapping scheme to prevent the effective weights from being mapped to hot cells to restore the system accuracy. Evaluation results for a two-layer neural network show that our scheme can improve the system accuracy by up to 39.2%.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"84 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3196128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

ReRAM-based systems are attractive implementation alternatives for neuromorphic computing because of their high speed and low design cost. In this work, we investigate the impact of temperature on the ReRAM-based neuromorphic architectures and show how varying temperatures have a negative impact on the computation accuracy. We first classify ReRAM crossbar cells based on their temperature and identify effective neural network weights that have large impacts on network outputs. Then, we propose a novel temperature-aware training and mapping scheme to prevent the effective weights from being mapped to hot cells to restore the system accuracy. Evaluation results for a two-layer neural network show that our scheme can improve the system accuracy by up to 39.2%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于reram的神经形态计算系统的热感知优化
基于reram的系统由于其高速度和低设计成本而成为神经形态计算的有吸引力的实现方案。在这项工作中,我们研究了温度对基于reram的神经形态架构的影响,并展示了温度变化如何对计算精度产生负面影响。我们首先根据温度对ReRAM交叉栏单元进行分类,并确定对网络输出有较大影响的有效神经网络权重。然后,我们提出了一种新的温度感知训练和映射方案,以防止有效权值被映射到热单元,以恢复系统的精度。对两层神经网络的评估结果表明,该方案可将系统准确率提高39.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1