A Turbo Pascal 7.0 program to fit a polynomial of any order to potential field anomalies based on the analytic least squares method

Np Njandjock, H. Kande, E. Manguelle-Dicourn, Charles T. Tabod, Mt Ndougssa, J. Marcel
{"title":"A Turbo Pascal 7.0 program to fit a polynomial of any order to potential field anomalies based on the analytic least squares method","authors":"Np Njandjock, H. Kande, E. Manguelle-Dicourn, Charles T. Tabod, Mt Ndougssa, J. Marcel","doi":"10.4314/AJST.V4I2.15304","DOIUrl":null,"url":null,"abstract":"An anomaly separation program for gravity (or magnetic) data in prospecting domain is presented. It can be applied to the gravity or magnetic anomaly separation of degree up to three and allows the management of up to 1200 data. Its implementation requires a Turbo Pascal surrounding through a TP7 list on the main root of the computer. The results obtained after execution of the program can be displayed, printed or stocked in a data file. In order to test the program, we have compared our results with those obtained from a Fortran program written by Radhakrisha and Krishnamacharyulu (1990) using the least squares method. The advantage of using our program is that a great number of data can be handled even for a local study, the execution is rapid and the accuracy is greatly improved upon. African Journal of Science and Technology Vol.4(2) 2003: 1-4","PeriodicalId":7641,"journal":{"name":"African Journal of Science and Technology","volume":"102 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/AJST.V4I2.15304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An anomaly separation program for gravity (or magnetic) data in prospecting domain is presented. It can be applied to the gravity or magnetic anomaly separation of degree up to three and allows the management of up to 1200 data. Its implementation requires a Turbo Pascal surrounding through a TP7 list on the main root of the computer. The results obtained after execution of the program can be displayed, printed or stocked in a data file. In order to test the program, we have compared our results with those obtained from a Fortran program written by Radhakrisha and Krishnamacharyulu (1990) using the least squares method. The advantage of using our program is that a great number of data can be handled even for a local study, the execution is rapid and the accuracy is greatly improved upon. African Journal of Science and Technology Vol.4(2) 2003: 1-4
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于解析最小二乘法拟合任意阶多项式的位场异常的Turbo Pascal 7.0程序
介绍了一种找矿区重(磁)资料异常分离程序。它可以应用于重、磁异常分离的程度高达3,并允许多达1200个数据的管理。它的实现需要一个Turbo Pascal围绕在计算机的主根上的TP7列表。程序执行后得到的结果可以显示、打印或储存在数据文件中。为了测试程序,我们使用最小二乘法将我们的结果与Radhakrisha和Krishnamacharyulu(1990)编写的Fortran程序获得的结果进行了比较。使用我们的程序的优点是即使是局部研究也可以处理大量的数据,执行速度快,准确性大大提高。非洲科学技术Vol.4(2) 2003: 1-4
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Engineering geological assessment of some lateritic soils in Ibadan, south-western Nigeria using bivariate and regression analyses Tabu search heuristic for university course timetabling problem THE INFLUENCE OF PH AND ADSORBENT CONCENTRATION ON ADSORPTION OF LEAD AND ZINC ON A NATURAL GOETHITE Conditional scale function estimate in the presence of unknown conditional quantile function DETERMINATION DE LA QUALITÉ DU PAIN DE SUCRE A PARTIR DES CONCENTRATIONS DES SUCRES REDUCTEURS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1