{"title":"Voltage controller for flux weakening operation of interior permanent magnet synchronous motor in automotive traction applications","authors":"Tobias Huber, W. Peters, J. Bocker","doi":"10.1109/IEMDC.2015.7409195","DOIUrl":null,"url":null,"abstract":"In electric automotive traction drives an optimal utilization of the DC-bus voltage in the wide flux weakening range is crucial. At the same time a voltage margin is required to ensure the stability of the inner current control loop. An adequate trade-off between these conflicting objectives is obtained by employing a superimposed voltage controller that is activated during flux weakening operation. In this paper, the design of such a voltage controller is presented. A simplified voltage controller plant model is identified from step response measurements. Due to variations of the plant parameters, the voltage controller is designed as a gain-scheduling controller with sufficient robustness towards plant model inaccuracies. The performance of the voltage controller is demonstrated by test-bench measurements based on an electric traction motor typically employed in sub-compact electric vehicles.","PeriodicalId":6477,"journal":{"name":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"8 1","pages":"1078-1083"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2015.7409195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
In electric automotive traction drives an optimal utilization of the DC-bus voltage in the wide flux weakening range is crucial. At the same time a voltage margin is required to ensure the stability of the inner current control loop. An adequate trade-off between these conflicting objectives is obtained by employing a superimposed voltage controller that is activated during flux weakening operation. In this paper, the design of such a voltage controller is presented. A simplified voltage controller plant model is identified from step response measurements. Due to variations of the plant parameters, the voltage controller is designed as a gain-scheduling controller with sufficient robustness towards plant model inaccuracies. The performance of the voltage controller is demonstrated by test-bench measurements based on an electric traction motor typically employed in sub-compact electric vehicles.