Connectivity Contribution to Urban Hub Network Based on Super Network Theory – Case Study of Beijing

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2021-02-01 DOI:10.7307/PTT.V33I1.3536
Yuan Guang, Dewen Kong, Lishan Sun, Wei Luo, Yan Xu
{"title":"Connectivity Contribution to Urban Hub Network Based on Super Network Theory – Case Study of Beijing","authors":"Yuan Guang, Dewen Kong, Lishan Sun, Wei Luo, Yan Xu","doi":"10.7307/PTT.V33I1.3536","DOIUrl":null,"url":null,"abstract":"With the rapid development of urbanization in China, the number of travel modes and urban passenger transportation hubs has been increasing, gradually forming multi-level and multi-attribute transport hub networks in the cities. At the same time, Super Network Theory (SNT) has advantages in displaying the multi-layer transport hubs. The aim of this paper is to provide a new perspective to study connectivity contribution of potential hubs. Urban transport hubs are ranked through topological features based on Hub Super Network (HSN). This paper proposes two indexes based on Super-Edge (SE), Zero Hub Degree of SE (ZHDoSE) and a number of shared SEes (NSSE), respectively. Then, a case study was conducted in Beijing, which considers four combinations to study the influence of transport modes and subway lines on connectivity. The results show that no-normalization strengthens the contribution of transport modes and subway lines on connectivity. Besides, the transport mode contributes a lot to the connectivity. However, elements normalization strengthens the subway lines under ZHDoSE reciprocal. In addition, various weights of ZHDoSE and NSSE have different influences on the recognition results of SEes in HSN.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":"98 1","pages":"35-47"},"PeriodicalIF":0.8000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/PTT.V33I1.3536","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

With the rapid development of urbanization in China, the number of travel modes and urban passenger transportation hubs has been increasing, gradually forming multi-level and multi-attribute transport hub networks in the cities. At the same time, Super Network Theory (SNT) has advantages in displaying the multi-layer transport hubs. The aim of this paper is to provide a new perspective to study connectivity contribution of potential hubs. Urban transport hubs are ranked through topological features based on Hub Super Network (HSN). This paper proposes two indexes based on Super-Edge (SE), Zero Hub Degree of SE (ZHDoSE) and a number of shared SEes (NSSE), respectively. Then, a case study was conducted in Beijing, which considers four combinations to study the influence of transport modes and subway lines on connectivity. The results show that no-normalization strengthens the contribution of transport modes and subway lines on connectivity. Besides, the transport mode contributes a lot to the connectivity. However, elements normalization strengthens the subway lines under ZHDoSE reciprocal. In addition, various weights of ZHDoSE and NSSE have different influences on the recognition results of SEes in HSN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于超级网络理论的城市枢纽网络连通性贡献——以北京为例
随着中国城市化的快速发展,出行方式和城市客运枢纽数量不断增加,城市逐步形成多层次、多属性的交通枢纽网络。同时,超级网络理论(SNT)在显示多层传输枢纽方面具有优势。本文的目的是为研究潜在枢纽的连通性贡献提供一个新的视角。基于枢纽超级网络(HSN)的拓扑特征对城市交通枢纽进行排序。本文分别提出了基于超边缘(SE)、SE的零枢纽度(ZHDoSE)和共享see数量(NSSE)的两个指标。然后,以北京为例,考虑四种组合,研究交通方式和地铁线路对连通性的影响。结果表明,非归一化强化了交通方式和地铁线路对连通性的贡献。此外,运输方式对连通性也有很大贡献。而元素归一化强化了ZHDoSE互反下的地铁线路。此外,ZHDoSE和NSSE的不同权重对HSN中see的识别结果有不同的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1