Numerical Study on the Behaviour of Built-up Cold-Formed Steel Corrugated Web Beams End Connections

Q3 Engineering Open Civil Engineering Journal Pub Date : 2023-04-01 DOI:10.28991/cej-2023-09-04-01
I. Both, M. Burcă, Ş. Benzar, V. Ungureanu
{"title":"Numerical Study on the Behaviour of Built-up Cold-Formed Steel Corrugated Web Beams End Connections","authors":"I. Both, M. Burcă, Ş. Benzar, V. Ungureanu","doi":"10.28991/cej-2023-09-04-01","DOIUrl":null,"url":null,"abstract":"Corrugated web beams made of cold-formed steel components represent an economical solution for structures, offering high flexural capacity and deformation rigidity. For conventional corrugated web beams, made of thick plates for the flanges and thin sinusoidal steel sheets for the web, the elements can be joined by standard bolted end-plate connections. In the case of corrugated web beams made of thin-walled cold-formed steel components only, additional plates are required to accommodate the shape and position of the profiles. A large experimental program was carried out on corrugated web beams made of cold-formed steel elements. One of the objectives was to determine the capacity of these beams and the influence of several parameters on the response of the beam, but also very important were the end connections of these beams. The recordings obtained from the tests were used to validate a numerical model. Based on the validation of the numerical model, finite element analyses were performed to study four solutions for end connections to facilitate assembly, optimise the number of bolts, and increase the capacity and rigidity. Although the connection can be improved for assembling reasons with the presented solutions, the overall capacity is limited by the components subjected to compression that lose their stability. Doi: 10.28991/CEJ-2023-09-04-01 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-04-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Corrugated web beams made of cold-formed steel components represent an economical solution for structures, offering high flexural capacity and deformation rigidity. For conventional corrugated web beams, made of thick plates for the flanges and thin sinusoidal steel sheets for the web, the elements can be joined by standard bolted end-plate connections. In the case of corrugated web beams made of thin-walled cold-formed steel components only, additional plates are required to accommodate the shape and position of the profiles. A large experimental program was carried out on corrugated web beams made of cold-formed steel elements. One of the objectives was to determine the capacity of these beams and the influence of several parameters on the response of the beam, but also very important were the end connections of these beams. The recordings obtained from the tests were used to validate a numerical model. Based on the validation of the numerical model, finite element analyses were performed to study four solutions for end connections to facilitate assembly, optimise the number of bolts, and increase the capacity and rigidity. Although the connection can be improved for assembling reasons with the presented solutions, the overall capacity is limited by the components subjected to compression that lose their stability. Doi: 10.28991/CEJ-2023-09-04-01 Full Text: PDF
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷弯型钢波纹腹板组合梁端部连接性能的数值研究
由冷弯型钢构件制成的波纹腹板梁代表了一种经济的结构解决方案,提供高抗弯能力和变形刚度。对于传统的波纹腹板梁,由厚板的法兰和薄正弦钢板的腹板制成,元件可以通过标准螺栓连接的端板连接。在仅由薄壁冷弯型钢构件制成的波纹腹板梁的情况下,需要额外的板来适应型材的形状和位置。对冷弯型钢构件波纹腹板梁进行了大型试验研究。其中一个目标是确定这些梁的容量和几个参数对梁的响应的影响,但也非常重要的是这些梁的末端连接。从测试中获得的记录用于验证数值模型。在数值模型验证的基础上,通过有限元分析,研究了四种末端连接方案,以方便装配,优化螺栓数量,提高承载力和刚度。虽然由于装配原因,连接可以通过所提出的解决方案得到改善,但总体容量受到压缩组件的限制,从而失去稳定性。Doi: 10.28991/CEJ-2023-09-04-01全文:PDF
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
期刊最新文献
Optimizing the Flexural Behavior of Bamboo Reinforced Concrete Beams Containing Cassava Peel Ash using Response Surface Methodology The Hydrodynamic Model Application for Future Coastal Zone Development in Remote Area Structural Strengthening of Insufficiently Designed Reinforced Concrete T-Beams using CFRP Composites Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading Post Fire Behavior of Structural Reinforced Concrete Member (Slab) Repairing with Various Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1