Machine Learning Methods for 1D Ultrasound Breast Cancer Screening

Neil J. Joshi, Seth D. Billings, Erika Schwartz, S. Harvey, P. Burlina
{"title":"Machine Learning Methods for 1D Ultrasound Breast Cancer Screening","authors":"Neil J. Joshi, Seth D. Billings, Erika Schwartz, S. Harvey, P. Burlina","doi":"10.1109/ICMLA.2017.00-76","DOIUrl":null,"url":null,"abstract":"This study addresses the development of machine learning methods for reduced space ultrasound to perform automated prescreening of breast cancer. The use of ultrasound in low-resource settings is constrained by lack of trained personnel and equipment costs, and motivates the need for automated, low-cost diagnostic tools. We hypothesize a solution to this problem is the use of 1D ultrasound (single piezoelectric element). We leverage random forest classifiers to classify 1D samples of various types of tissue phantoms simulating cancerous, benign lesions, and non-cancerous tissues. In addition, we investigate the optimal ultrasound power and frequency parameters to maximize performance. We show preliminary results on 2-, 3- and 5-class classification problems for the ideal power/frequency combination. These results demonstrate promise towards the use of a single-element ultrasound device to screen for breast cancer.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"19 1","pages":"711-715"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study addresses the development of machine learning methods for reduced space ultrasound to perform automated prescreening of breast cancer. The use of ultrasound in low-resource settings is constrained by lack of trained personnel and equipment costs, and motivates the need for automated, low-cost diagnostic tools. We hypothesize a solution to this problem is the use of 1D ultrasound (single piezoelectric element). We leverage random forest classifiers to classify 1D samples of various types of tissue phantoms simulating cancerous, benign lesions, and non-cancerous tissues. In addition, we investigate the optimal ultrasound power and frequency parameters to maximize performance. We show preliminary results on 2-, 3- and 5-class classification problems for the ideal power/frequency combination. These results demonstrate promise towards the use of a single-element ultrasound device to screen for breast cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维超声乳腺癌筛查的机器学习方法
本研究解决了用于减少空间超声的机器学习方法的发展,以执行乳腺癌的自动预筛查。在资源匮乏的环境中,超声的使用受到缺乏训练有素的人员和设备成本的限制,并激发了对自动化、低成本诊断工具的需求。我们假设解决这个问题的方法是使用一维超声(单压电元件)。我们利用随机森林分类器对模拟癌变、良性病变和非癌变组织的各种类型组织幻象的1D样本进行分类。此外,我们研究了最佳的超声功率和频率参数,以最大限度地提高性能。我们展示了理想功率/频率组合的2级、3级和5级分类问题的初步结果。这些结果显示了使用单元件超声设备筛查乳腺癌的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree-Structured Curriculum Learning Based on Semantic Similarity of Text Direct Multiclass Boosting Using Base Classifiers' Posterior Probabilities Estimates Predicting Psychosis Using the Experience Sampling Method with Mobile Apps Human Action Recognition from Body-Part Directional Velocity Using Hidden Markov Models Realistic Traffic Generation for Web Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1