Neil J. Joshi, Seth D. Billings, Erika Schwartz, S. Harvey, P. Burlina
{"title":"Machine Learning Methods for 1D Ultrasound Breast Cancer Screening","authors":"Neil J. Joshi, Seth D. Billings, Erika Schwartz, S. Harvey, P. Burlina","doi":"10.1109/ICMLA.2017.00-76","DOIUrl":null,"url":null,"abstract":"This study addresses the development of machine learning methods for reduced space ultrasound to perform automated prescreening of breast cancer. The use of ultrasound in low-resource settings is constrained by lack of trained personnel and equipment costs, and motivates the need for automated, low-cost diagnostic tools. We hypothesize a solution to this problem is the use of 1D ultrasound (single piezoelectric element). We leverage random forest classifiers to classify 1D samples of various types of tissue phantoms simulating cancerous, benign lesions, and non-cancerous tissues. In addition, we investigate the optimal ultrasound power and frequency parameters to maximize performance. We show preliminary results on 2-, 3- and 5-class classification problems for the ideal power/frequency combination. These results demonstrate promise towards the use of a single-element ultrasound device to screen for breast cancer.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"19 1","pages":"711-715"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.00-76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This study addresses the development of machine learning methods for reduced space ultrasound to perform automated prescreening of breast cancer. The use of ultrasound in low-resource settings is constrained by lack of trained personnel and equipment costs, and motivates the need for automated, low-cost diagnostic tools. We hypothesize a solution to this problem is the use of 1D ultrasound (single piezoelectric element). We leverage random forest classifiers to classify 1D samples of various types of tissue phantoms simulating cancerous, benign lesions, and non-cancerous tissues. In addition, we investigate the optimal ultrasound power and frequency parameters to maximize performance. We show preliminary results on 2-, 3- and 5-class classification problems for the ideal power/frequency combination. These results demonstrate promise towards the use of a single-element ultrasound device to screen for breast cancer.