Extension of Germanium-on-insulator optical absorption edge using CMOS-compatible silicon nitride stressor

Yiding Lin, D. Ma, K. Lee, Shuyu Bao, J. Michel, C. S. Tan
{"title":"Extension of Germanium-on-insulator optical absorption edge using CMOS-compatible silicon nitride stressor","authors":"Yiding Lin, D. Ma, K. Lee, Shuyu Bao, J. Michel, C. S. Tan","doi":"10.1109/CLEOPR.2017.8118797","DOIUrl":null,"url":null,"abstract":"Numerical study on the effect of an external stressor material, silicon nitride (SiN), on the tensile strain enhancement of Germanium waveguide-on-insulator (Ge WG-OI) was performed. The enhanced tensile strain shrinks Ge bandgap which leads to extension of optical absorption edge towards longer wavelength. It was found that 1GPa tensile SiN (400nm) would introduce ∼0.65% uniaxial tensile strain (along WG width direction) in Ge WG with 0.5μm width and extend the Γ-valley-light-hole absorption edge to ∼1658nm. Tensile strain-enhanced Ge WG-OI was also experimentally demonstrated. These studies pave the way for an on-chip tensile-strained Ge photodetector with improved performance comparable to InGaAs-based detectors. This technique is completely CMOS-compatible and could also be applied to other Ge-based on-chip active device design such as lasers.","PeriodicalId":6655,"journal":{"name":"2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","volume":"68 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOPR.2017.8118797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Numerical study on the effect of an external stressor material, silicon nitride (SiN), on the tensile strain enhancement of Germanium waveguide-on-insulator (Ge WG-OI) was performed. The enhanced tensile strain shrinks Ge bandgap which leads to extension of optical absorption edge towards longer wavelength. It was found that 1GPa tensile SiN (400nm) would introduce ∼0.65% uniaxial tensile strain (along WG width direction) in Ge WG with 0.5μm width and extend the Γ-valley-light-hole absorption edge to ∼1658nm. Tensile strain-enhanced Ge WG-OI was also experimentally demonstrated. These studies pave the way for an on-chip tensile-strained Ge photodetector with improved performance comparable to InGaAs-based detectors. This technique is completely CMOS-compatible and could also be applied to other Ge-based on-chip active device design such as lasers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用cmos兼容的氮化硅应力源扩展绝缘体上锗光吸收边
采用数值方法研究了氮化硅(SiN)外源材料对锗绝缘子波导(Ge WG-OI)拉伸应变增强的影响。拉伸应变的增强缩小了锗带隙,导致光学吸收边缘向更长的波长延伸。结果发现,1GPa的拉伸SiN (400nm)会在0.5μm宽度的Ge WG中引入~ 0.65%的单轴拉伸应变(沿WG宽度方向),并将Γ-valley-light-hole吸收边延伸到~ 1658nm。拉伸应变增强的Ge WG-OI也得到了实验证明。这些研究为片上拉伸应变锗光电探测器铺平了道路,其性能可与基于ingaas的探测器相媲美。该技术完全兼容cmos,也可应用于其他基于ge的片上有源器件设计,如激光器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
System setup consideration for range gated imaging Fiber specklegram sensor based on the twist-induced effect in tilted two-mode fiber Bragg gratings Simulation of all-optical NOR gate using single quantum-dot SOA and optical filter Passive Q-switching generation from an erbium-doped fiber laser using a Brewster fiber grating Tunable mode locked Erbium-doped fiber laser based a tilted fiber grating and carbon nanotube saturable absorber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1