Star clusters in evolving galaxies

IF 11.7 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS New Astronomy Reviews Pub Date : 2018-04-01 DOI:10.1016/j.newar.2018.03.001
Florent Renaud
{"title":"Star clusters in evolving galaxies","authors":"Florent Renaud","doi":"10.1016/j.newar.2018.03.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution<span><span>. Old globular clusters<span> keep imprints of the physical conditions of their assembly in the early Universe, and </span></span>younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 10</span></span><sup>5</sup>M<sub>⊙</sub><span><span> objects in the Milky Way<span>, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, </span></span>stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.</span></p></div>","PeriodicalId":19718,"journal":{"name":"New Astronomy Reviews","volume":"81 ","pages":"Pages 1-38"},"PeriodicalIF":11.7000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.newar.2018.03.001","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy Reviews","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387647318300010","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 32

Abstract

Their ubiquity and extreme densities make star clusters probes of prime importance of galaxy evolution. Old globular clusters keep imprints of the physical conditions of their assembly in the early Universe, and younger stellar objects, observationally resolved, tell us about the mechanisms at stake in their formation. Yet, we still do not understand the diversity involved: why is star cluster formation limited to 105M objects in the Milky Way, while some dwarf galaxies like NGC 1705 are able to produce clusters 10 times more massive? Why do dwarfs generally host a higher specific frequency of clusters than larger galaxies? How to connect the present-day, often resolved, stellar systems to the formation of globular clusters at high redshift? And how do these links depend on the galactic and cosmological environments of these clusters? In this review, I present recent advances on star cluster formation and evolution, in galactic and cosmological context. The emphasis is put on the theory, formation scenarios and the effects of the environment on the evolution of the global properties of clusters. A few open questions are identified.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演化星系中的星团
它们的普遍性和极高的密度使星团探测器成为星系演化的首要任务。古老的球状星团保留了它们在早期宇宙中聚集的物理条件的印记,而更年轻的恒星物体,通过观测解决,告诉我们它们形成过程中的危险机制。然而,我们仍然不理解其中的多样性:为什么星团的形成仅限于银河系中105M⊙的物体,而一些像ngc1705这样的矮星系却能够产生10倍于此的星团?为什么矮星通常比大星系拥有更高的星系团的特定频率?如何将现今的恒星系统与高红移球状星团的形成联系起来?这些联系是如何依赖于这些星系团的星系和宇宙环境的?在这篇综述中,我介绍了在银河系和宇宙学背景下星团形成和演化的最新进展。重点是理论,形成情景和环境对集群整体属性演变的影响。确定了几个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Astronomy Reviews
New Astronomy Reviews 地学天文-天文与天体物理
CiteScore
18.60
自引率
1.70%
发文量
7
审稿时长
11.3 weeks
期刊介绍: New Astronomy Reviews publishes review articles in all fields of astronomy and astrophysics: theoretical, observational and instrumental. This international review journal is written for a broad audience of professional astronomers and astrophysicists. The journal covers solar physics, planetary systems, stellar, galactic and extra-galactic astronomy and astrophysics, as well as cosmology. New Astronomy Reviews is also open for proposals covering interdisciplinary and emerging topics such as astrobiology, astroparticle physics, and astrochemistry.
期刊最新文献
Observations of pre- and proto-brown dwarfs in nearby clouds: Paving the way to further constraining theories of brown dwarf formation Exploring Titan’s subsurface: Insights from Cassini RADAR and prospects for future investigations Gamma-ray bursts at extremely small fluence The CR volume for black holes and the corresponding entropy variation: A review Blind source separation in 3rd generation gravitational-wave detectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1