A Comprehensive Review on Solid Lipid Nanoparticles as Delivery Vehicle for Enhanced Pharmacokinetic and Pharmacodynamic Activity of Poorly Soluble Drugs
{"title":"A Comprehensive Review on Solid Lipid Nanoparticles as Delivery Vehicle for Enhanced Pharmacokinetic and Pharmacodynamic Activity of Poorly Soluble Drugs","authors":"N. Dudhipala","doi":"10.37285/ijpsn.2019.12.2.1","DOIUrl":null,"url":null,"abstract":"This article describes the current state and future perspectives of solid lipid nanoparticles for achieving high delivery of drugs with greater therapeutic outcomes. The oral route is the most preferred route of administration for majority of drugs. Problems such as poor solubility or chemical stability in the environment of the gastrointestinal tract, poor permeability through the biological membranes or sensitivity to metabolism are well known to result in the rejection of potential drug candidates as oral delivery products. Hence, lipid-based drug delivery systems have been proposed as a means of bypassing the resistant chemical or physical barriers associated with poorly absorbed drugs. Solid lipid nanoparticles (SLNs) can be an attractive one option for oral drug delivery vehicles as they hold tremendous potential to improve the oral bioavailability of drugs, concomitant reduction of drug toxicity and stability of drug in both GIT and plasma. SLNs are in submicron size range and are made of biocompatible and biodegradable materials capable of incorporating both lipophilic and hydrophilic drugs. SLNs are considered as substitute to other colloidal drug systems and are being used as controlled and targeted delivery systems. The SNL technology has greatly revolutionized the delivery systems for poorly soluble drugs. This article describes the methodologies used for preparation and characterization of SNLs. It outlined the development of stable solid lipid nanoparticles by different techniques. Further, it describes the current status of pharmacokinetic and pharmaco-dynamic studies reported on SLN systems. Finally, it provides a brief outlook on current marketed preparation and the future scope of SLN technology.","PeriodicalId":14382,"journal":{"name":"International Journal of Pharmaceutical Sciences and Nanotechnology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutical Sciences and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37285/ijpsn.2019.12.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
This article describes the current state and future perspectives of solid lipid nanoparticles for achieving high delivery of drugs with greater therapeutic outcomes. The oral route is the most preferred route of administration for majority of drugs. Problems such as poor solubility or chemical stability in the environment of the gastrointestinal tract, poor permeability through the biological membranes or sensitivity to metabolism are well known to result in the rejection of potential drug candidates as oral delivery products. Hence, lipid-based drug delivery systems have been proposed as a means of bypassing the resistant chemical or physical barriers associated with poorly absorbed drugs. Solid lipid nanoparticles (SLNs) can be an attractive one option for oral drug delivery vehicles as they hold tremendous potential to improve the oral bioavailability of drugs, concomitant reduction of drug toxicity and stability of drug in both GIT and plasma. SLNs are in submicron size range and are made of biocompatible and biodegradable materials capable of incorporating both lipophilic and hydrophilic drugs. SLNs are considered as substitute to other colloidal drug systems and are being used as controlled and targeted delivery systems. The SNL technology has greatly revolutionized the delivery systems for poorly soluble drugs. This article describes the methodologies used for preparation and characterization of SNLs. It outlined the development of stable solid lipid nanoparticles by different techniques. Further, it describes the current status of pharmacokinetic and pharmaco-dynamic studies reported on SLN systems. Finally, it provides a brief outlook on current marketed preparation and the future scope of SLN technology.